Department of Chemistry, University of Louisville, Louisville, Kentucky.
Department of Physics, The City College of New York, New York, New York.
Biophys J. 2021 Oct 19;120(20):4623-4634. doi: 10.1016/j.bpj.2021.06.043. Epub 2021 Jul 31.
Elastin fibers assemble in the extracellular matrix from the precursor protein tropoelastin and provide the flexibility and spontaneous recoil required for arterial function. Unlike many proteins, a structure-function mechanism for elastin has been elusive. We have performed detailed NMR relaxation studies of the dynamics of the minielastins 24x' and 20x' using solution NMR, and of purified bovine elastin fibers in the presence and absence of mechanical stress using solid state NMR. The low sequence complexity of the minielastins enables us to determine average dynamical timescales and degrees of local ordering in the cross-link and hydrophobic modules separately using NMR relaxation by taking advantage of their residue-specific resolution. We find an extremely high degree of disorder, with order parameters for the entirety of the hydrophobic domains near zero, resembling that of simple chemical polymers and less than the order parameters that have been observed in other intrinsically disordered proteins. We find that average backbone order parameters in natural, purified elastin fibers are comparable to those found in 24x' and 20x' in solution. The difference in dynamics, compared with the minielastins, is that backbone correlation times are significantly slowed in purified elastin. Moreover, when elastin is mechanically stretched, the high chain disorder in purified elastin is retained, showing that any change in local ordering is below that detectable in our experiment. Combined with our previous finding of a 10-fold increase in the ordering of water when fully hydrated elastin fibers are stretched by 50%, these results support the hypothesis that stretch induced solvent ordering, i.e., the hydrophobic effect, is a key player in the elastic recoil of elastin as opposed to configurational entropy loss.
弹性纤维由前体蛋白原弹性蛋白在细胞外基质中组装而成,为动脉功能提供了所需的柔韧性和自发回弹。与许多蛋白质不同,弹性蛋白的结构-功能机制一直难以捉摸。我们使用溶液 NMR 对 minielastin 24x'和 20x'的动力学进行了详细的 NMR 弛豫研究,并使用固态 NMR 对存在和不存在机械应力的纯化牛弹性纤维进行了研究。minielastin 的低序列复杂性使我们能够通过利用其残基特异性分辨率,使用 NMR 弛豫分别确定交联和疏水区模块的平均动力学时间尺度和局部有序度。我们发现存在极高的无序度,疏水区的所有残基的序参数接近于零,类似于简单的化学聚合物,而不是在其他固有无序蛋白质中观察到的序参数。我们发现,天然纯化弹性纤维中的平均骨架序参数与溶液中 24x'和 20x'的序参数相当。与 minielastin 相比,动力学的差异在于,在纯化的弹性蛋白中,骨架相关时间明显减慢。此外,当弹性蛋白受到机械拉伸时,纯化的弹性蛋白中的高链无序度得以保留,表明局部有序性的任何变化都低于我们实验可检测的水平。结合我们之前发现的完全水合的弹性纤维拉伸 50%时水的有序度增加 10 倍的发现,这些结果支持这样的假设,即拉伸诱导的溶剂有序化,即疏水效应,是弹性蛋白弹性回弹的关键因素,而不是构象熵损失。