Université Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
Sci Adv. 2019 Jun 28;5(6):eaax2348. doi: 10.1126/sciadv.aax2348. eCollection 2019 Jun.
Protein and water dynamics have a synergistic relationship, which is particularly important for intrinsically disordered proteins (IDPs), although the details of this coupling remain poorly understood. Here, we combine temperature-dependent molecular dynamics simulations using different water models with extensive nuclear magnetic resonance (NMR) relaxation to examine the importance of distinct modes of solvent and solute motion for the accurate reproduction of site-specific dynamics in IDPs. We find that water dynamics play a key role in motional processes internal to "segments" of IDPs, stretches of primary sequence that share dynamic properties and behave as discrete dynamic units. We identify a relationship between the time scales of intrasegment dynamics and the lifetime of hydrogen bonds in bulk water. Correct description of these motions is essential for accurate reproduction of protein relaxation. Our findings open important perspectives for understanding the role of hydration water on the behavior and function of IDPs in solution.
蛋白质和水的动力学具有协同关系,这对无序蛋白质(IDPs)尤为重要,尽管这种耦合的细节仍知之甚少。在这里,我们结合了使用不同水模型的温度依赖分子动力学模拟和广泛的核磁共振(NMR)弛豫,以研究溶剂和溶质运动的不同模式对于准确再现 IDPs 中特定部位动力学的重要性。我们发现水动力学在 IDPs“片段”内部的运动过程中起着关键作用,这些“片段”是具有共享动态特性并表现为离散动态单元的一级序列伸展。我们确定了 IDPs 内部动力学的时间尺度与体相水中氢键寿命之间的关系。准确描述这些运动对于准确再现蛋白质弛豫至关重要。我们的研究结果为理解水合水在 IDPs 在溶液中的行为和功能中的作用提供了重要的视角。