Suppr超能文献

基于人工神经网络的独立可调射频传感器系统。

Artificial neural network-based standalone tunable RF sensor system.

机构信息

EE Department, IIT Kanpur, ACES 329, Kanpur, India.

出版信息

Rev Sci Instrum. 2021 Jul 1;92(7):075003. doi: 10.1063/5.0048026.

Abstract

An artificial neural network (ANN) based tunable automated standalone RF sensor system is proposed to realize an improved sensing module involving a quite accurate solution of the non-linear inverse characterization problem. The presented tunable sensor system is quite novel as it alleviates the need for any active tuning circuitry. Moreover, the proposed unified design topology facilitates a relatively higher tuning range (1900 MHz) than that of the earlier reported (580 MHz) capacitor-based tunable complementary split-ring resonator (CSRR). The higher tuning range of structures resulted from the improved design configuration comprising a modified CSRR design coupled with a modified microstrip line. The obtained dielectric sensitivity is ∼8.8%. The numerically generated S-parameters of various dielectric samples are used here as a training dataset for the ANN, which is trained using the Levenberg-Marquardt backpropagation algorithm in combination with the Bayesian regularization. Finally, several standard test samples at different unloaded tuned frequencies are measured to record the corresponding resonant frequency and magnitude of the S-parameter in order to process them using the proposed ANN-based sensor system. It is found that the developed ANN-based sensor system provides a reasonably accurate value of the extracted complex permittivity over the frequency range under consideration, which basically removes the need for designing multiple resonant structures unlikely to the conventional resonant sensors.

摘要

提出了一种基于人工神经网络(ANN)的可调谐自动化独立射频传感器系统,以实现改进的传感模块,涉及相当准确的非线性逆特征化问题的解决方案。所提出的可调谐传感器系统非常新颖,因为它不需要任何有源调谐电路。此外,所提出的统一设计拓扑结构实现了相对较高的调谐范围(1900 MHz),比早期报道的基于电容的可调谐互补分裂环谐振器(CSRR)(580 MHz)更高。结构的更高调谐范围源于改进的设计配置,包括改进的 CSRR 设计与改进的微带线的耦合。获得的介电灵敏度约为 8.8%。此处将各种介电样本的数值生成 S 参数用作 ANN 的训练数据集,该数据集使用 Levenberg-Marquardt 反向传播算法结合贝叶斯正则化进行训练。最后,在不同的空载调谐频率下测量了几个标准测试样本,以记录相应的谐振频率和 S 参数的幅度,以便使用基于提出的 ANN 的传感器系统对其进行处理。结果发现,所开发的基于 ANN 的传感器系统在考虑的频率范围内提供了相对准确的提取复介电常数值,这基本上消除了设计多个不可能与传统谐振传感器相比的谐振结构的需要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验