Suppr超能文献

Multi-energy reconstructions, central electron temperature measurements, and early detection of the birth and growth of runaway electrons using a versatile soft x-ray pinhole camera at MST.

作者信息

Delgado-Aparicio L F, VanMeter P, Barbui T, Chellai O, Wallace J, Yamazaki H, Kojima S, Almagari A F, Hurst N C, Chapman B E, McCollam K J, Den Hartog D J, Sarff J S, Reusch L M, Pablant N, Hill K, Bitter M, Ono M, Stratton B, Takase Y, Luethi B, Rissi M, Donath T, Hofer P, Pilet N

机构信息

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA.

University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

Rev Sci Instrum. 2021 Jul 1;92(7):073502. doi: 10.1063/5.0043672.

Abstract

A multi-energy soft x-ray pinhole camera has been designed, built, and deployed at the Madison Symmetric Torus to aid the study of particle and thermal transport, as well as MHD stability physics. This novel imaging diagnostic technique employs a pixelated x-ray detector in which the lower energy threshold for photon detection can be adjusted independently on each pixel. The detector of choice is a PILATUS3 100 K with a 450 μm thick silicon sensor and nearly 100 000 pixels sensitive to photon energies between 1.6 and 30 keV. An ensemble of cubic spline smoothing functions has been applied to the line-integrated data for each time-frame and energy-range, obtaining a reduced standard-deviation when compared to that dominated by photon-noise. The multi-energy local emissivity profiles are obtained from a 1D matrix-based Abel-inversion procedure. Central values of T can be obtained by modeling the slope of the continuum radiation from ratios of the inverted radial emissivity profiles over multiple energy ranges with no a priori assumptions of plasma profiles, magnetic field reconstruction constraints, high-density limitations, or need of shot-to-shot reproducibility. In tokamak plasmas, a novel application has recently been tested for early detection, 1D imaging, and study of the birth, exponential growth, and saturation of runaway electrons at energies comparable to 100 × T; thus, early results are also presented.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验