Suppr超能文献

多步骤结构-活性关系筛选有效地预测了多种 PPARγ 拮抗剂。

Multi-step structure-activity relationship screening efficiently predicts diverse PPARγ antagonists.

机构信息

Department of Life and Nanopharmaceutical Science, South Korea.

Department of Life and Nanopharmaceutical Science, South Korea; Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea.

出版信息

Chemosphere. 2022 Jan;286(Pt 1):131540. doi: 10.1016/j.chemosphere.2021.131540. Epub 2021 Jul 21.

Abstract

In discovering the potential antagonist of peroxisome proliferator-activated receptor gamma (PPARγ), the structure-activity relationship (SAR) is a useful in silico method. However, it is difficult for conventional SAR approaches to predict the activities of antagonists owing to the large structural diversity of antagonistic compounds. This study provides evidence that multi-step SAR screening is applicable for predicting PPARγ antagonists by combining different complementary methodologies. We constructed three models: read-across-like SAR, docking-simulation-interpreting SAR, and deep-learning-based SAR. To provide user-customized prediction results, our multi-step SAR screening model combined the three SAR models in a stepwise manner, which subdivided them according to potential levels of the PPARγ antagonist. The read-across-like SAR, which considered specific antagonist scaffolds, revealed the highest positive predictive value (PPV). The docking-simulation-interpreting SAR, which considered the molecular surface features, revealed high statistics for the PPV and the true-positive rate (TPR). The deep-learning-based SAR showed the highest TPR at the last classification step. This multi-step SAR screening covered the antagonists of high reliability provided by a read-across-like SAR, as well as the antagonists of diverse scaffolds provided by docking-simulation-interpreting SAR and deep-learning-based SAR. Therefore, to predict PPARγ antagonists, multi-step SAR screening could be as a useful tool.

摘要

在发现过氧化物酶体增殖物激活受体 γ (PPARγ) 的潜在拮抗剂时,结构-活性关系 (SAR) 是一种有用的计算方法。然而,由于拮抗化合物的结构多样性很大,传统的 SAR 方法很难预测它们的活性。本研究提供的证据表明,通过结合不同的互补方法,多步 SAR 筛选可用于预测 PPARγ 拮抗剂。我们构建了三种模型:类读方法 SAR、对接模拟解释 SAR 和基于深度学习的 SAR。为了提供用户定制的预测结果,我们的多步 SAR 筛选模型以逐步的方式结合了这三种 SAR 模型,根据 PPARγ 拮抗剂的潜在水平对它们进行了细分。考虑到特定拮抗剂支架的类读方法 SAR 显示出最高的正预测值 (PPV)。考虑分子表面特征的对接模拟解释 SAR 显示出较高的 PPV 和真阳性率 (TPR) 统计数据。基于深度学习的 SAR 在最后一个分类步骤显示出最高的 TPR。这种多步 SAR 筛选涵盖了类读方法 SAR 提供的高可靠性的拮抗剂,以及对接模拟解释 SAR 和基于深度学习的 SAR 提供的不同支架的拮抗剂。因此,多步 SAR 筛选可以作为一种有用的工具来预测 PPARγ 拮抗剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验