Marko Andriy, Sojka Antonin, Laguta Oleksii, Neugebauer Petr
Central European Institute of Technology, Brno University of Technology, Purkynova-Str. 123, 61200, Brno, Czech Republic.
Phys Chem Chem Phys. 2021 Aug 28;23(32):17310-17322. doi: 10.1039/d0cp06071b. Epub 2021 Aug 4.
Nitroxide radicals are widely used in electron paramagnetic resonance (EPR) applications. Nitroxides are stable organic radicals containing the N-O˙ group with hyperfine coupled unpaired electron and nitrogen nuclear spins. In the past, much attention was devoted to studying nitroxide EPR spectra and electron spin magnetization evolution under various experimental conditions. However, the dynamics of nitrogen nuclear spin has not been investigated in detail so far. In this work, we performed quantitative prediction and simulation of nitrogen nuclear spin magnetization evolution in several magnetic resonance experiments. Our research was focused on fast rotating nitroxide radicals in liquid solutions. We used a general approach allowing us to compute electron and nitrogen nuclear spin magnetization from the same time-dependent spin density matrix obtained by solving the Liouville/von Neumann equation. We investigated the nitrogen nuclear spin dynamics subjected to various radiofrequency magnetic fields. Furthermore, we predicted a large dynamic nuclear polarization of nitrogen upon nitroxide irradiation with microwaves and analyzed its effect on the nitroxide EPR saturation factor.
氮氧化物自由基广泛应用于电子顺磁共振(EPR)领域。氮氧化物是稳定的有机自由基,含有N-O˙基团,具有超精细耦合的未成对电子和氮核自旋。过去,人们致力于研究各种实验条件下氮氧化物的EPR光谱和电子自旋磁化强度的演变。然而,迄今为止,氮核自旋的动力学尚未得到详细研究。在这项工作中,我们在几个磁共振实验中对氮核自旋磁化强度的演变进行了定量预测和模拟。我们的研究集中在液体溶液中快速旋转的氮氧化物自由基。我们采用了一种通用方法,通过求解刘维尔/冯·诺依曼方程得到的与时间相关的自旋密度矩阵来计算电子和氮核自旋磁化强度。我们研究了在各种射频磁场作用下的氮核自旋动力学。此外,我们预测了用微波照射氮氧化物时氮的大动态核极化,并分析了其对氮氧化物EPR饱和因子的影响。