Suppr超能文献

面对并克服生物分子核磁共振光谱中的灵敏度挑战

Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy.

作者信息

Ardenkjaer-Larsen Jan-Henrik, Boebinger Gregory S, Comment Arnaud, Duckett Simon, Edison Arthur S, Engelke Frank, Griesinger Christian, Griffin Robert G, Hilty Christian, Maeda Hidaeki, Parigi Giacomo, Prisner Thomas, Ravera Enrico, van Bentum Jan, Vega Shimon, Webb Andrew, Luchinat Claudio, Schwalbe Harald, Frydman Lucio

机构信息

GE Healthcare, Broendby, Denmark; Department of Electrical Engineering, Technical University of Denmark, Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre (Denmark).

U.S. National High Magnetic Field Lab, Florida State University, Tallahassee, FL 32310 (USA).

出版信息

Angew Chem Int Ed Engl. 2015 Aug 3;54(32):9162-85. doi: 10.1002/anie.201410653. Epub 2015 Jul 1.

Abstract

In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi-author interdisciplinary Review presents a state-of-the-art description of the primary approaches that were considered. Topics discussed included the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation. All of these are orthogonal efforts, whose gains could multiply and thereby enhance the sensitivity of solid- and liquid-state experiments. While substantial advances have been made in all these areas, numerous challenges remain in the quest of endowing NMR spectroscopy with the sensitivity that has characterized forms of spectroscopies based on electrical or optical measurements. These challenges, and the ways by which scientists and engineers are striving to solve them, are also addressed.

摘要

2013年春,核磁共振光谱学家齐聚以色列魏茨曼科学研究所,就提高核磁共振实验灵敏度的方法展开头脑风暴,尤其是在生物分子环境中的应用。这篇多作者跨学科综述对所考虑的主要方法进行了最新描述。讨论的主题包括超高场核磁共振系统的未来、新兴的核磁共振检测技术、核超极化的新方法以及样品制备方面的进展。所有这些都是相互独立的工作,其成果可能会成倍增加,从而提高固态和液态实验的灵敏度。尽管在所有这些领域都取得了重大进展,但在赋予核磁共振光谱与基于电学或光学测量的光谱形式相当的灵敏度方面,仍存在诸多挑战。本文也探讨了这些挑战以及科学家和工程师努力解决它们的方式。

相似文献

1
Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy.面对并克服生物分子核磁共振光谱中的灵敏度挑战
Angew Chem Int Ed Engl. 2015 Aug 3;54(32):9162-85. doi: 10.1002/anie.201410653. Epub 2015 Jul 1.
3
Solid-state NMR spectroscopy on complex biomolecules.固态核磁共振光谱学在复杂生物分子上的应用。
Angew Chem Int Ed Engl. 2010 Nov 2;49(45):8346-57. doi: 10.1002/anie.201002823.
4
Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.基于质子的超快魔角旋转固态核磁共振波谱学。
Acc Chem Res. 2017 Apr 18;50(4):1105-1113. doi: 10.1021/acs.accounts.7b00082. Epub 2017 Mar 29.
5
DNP NMR of biomolecular assemblies.生物分子组装体的 DNP NMR。
J Struct Biol. 2019 Apr 1;206(1):90-98. doi: 10.1016/j.jsb.2018.09.011. Epub 2018 Sep 29.

引用本文的文献

3
Halogen-Bond-Mediated C Overhauser Dynamic Nuclear Polarization at 9.4 T.9.4特斯拉下卤素键介导的碳奥弗豪泽动态核极化
J Phys Chem Lett. 2025 May 8;16(18):4505-4514. doi: 10.1021/acs.jpclett.5c00798. Epub 2025 Apr 28.
5
pyIHM: Indirect Hard Modeling, in Python.pyIHM:用Python实现的间接硬建模
Anal Chem. 2025 Mar 4;97(8):4598-4605. doi: 10.1021/acs.analchem.4c06484. Epub 2025 Feb 24.

本文引用的文献

1
Boosting Dissolution Dynamic Nuclear Polarization by Cross Polarization.通过交叉极化增强溶解动态核极化
J Phys Chem Lett. 2013 Jan 3;4(1):111-4. doi: 10.1021/jz301781t. Epub 2012 Dec 18.
2
Achievement of 1020MHz NMR.实现1020兆赫核磁共振。
J Magn Reson. 2015 Jul;256:30-33. doi: 10.1016/j.jmr.2015.04.009. Epub 2015 May 7.
3
4
Overhauser effects in insulating solids.绝缘固体中的欧弗豪泽效应。
J Chem Phys. 2014 Aug 14;141(6):064202. doi: 10.1063/1.4891866.
5
Paramagnetic shimming for wide-range variable-field NMR.用于宽范围可变场核磁共振的顺磁匀场
J Magn Reson. 2014 Sep;246:57-61. doi: 10.1016/j.jmr.2014.06.022. Epub 2014 Jul 12.
9
Bringing dynamic molecular machines into focus by methyl-TROSY NMR.通过甲基-TROSY NMR 聚焦动态分子机器。
Annu Rev Biochem. 2014;83:291-315. doi: 10.1146/annurev-biochem-060713-035829.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验