Department of Speech Pathology, Arizona State University, Phoenix, AZ, USA.
Aural Analytics, Scottsdale, AZ, USA.
Amyotroph Lateral Scler Frontotemporal Degener. 2021;22(sup1):14-21. doi: 10.1080/21678421.2020.1866013.
In this study, we present and provide validation data for a tool that predicts forced vital capacity (FVC) from speech acoustics collected remotely via a mobile app without the need for any additional equipment (e.g. a spirometer). We trained a machine learning model on a sample of healthy participants and participants with amyotrophic lateral sclerosis (ALS) to learn a mapping from speech acoustics to FVC and used this model to predict FVC values in a new sample from a different study of participants with ALS. We further evaluated the cross-sectional accuracy of the model and its sensitivity to within-subject change in FVC. We found that the predicted and observed FVC values in the test sample had a correlation coefficient of .80 and mean absolute error between .54 L and .58 L (18.5% to 19.5%). In addition, we found that the model was able to detect longitudinal decline in FVC in the test sample, although to a lesser extent than the observed FVC values measured using a spirometer, and was highly repeatable (ICC = 0.92-0.94), although to a lesser extent than the actual FVC (ICC = .97). These results suggest that sustained phonation may be a useful surrogate for VC in both research and clinical environments.
在这项研究中,我们提出并提供了一种工具的验证数据,该工具可通过移动应用程序远程从语音声学中预测用力肺活量(FVC),而无需任何额外的设备(例如肺活量计)。我们在健康参与者和肌萎缩侧索硬化症(ALS)参与者的样本上训练了机器学习模型,以学习从语音声学到 FVC 的映射,并使用该模型预测来自 ALS 参与者的不同研究的新样本中的 FVC 值。我们进一步评估了模型的横断面准确性及其对 FVC 内个体变化的敏感性。我们发现,在测试样本中,预测的和观察到的 FVC 值之间的相关系数为.80,平均绝对误差在.54L 和.58L 之间(18.5%到 19.5%)。此外,我们发现该模型能够检测测试样本中 FVC 的纵向下降,尽管与使用肺活量计测量的实际 FVC 值相比,下降程度较小,而且具有高度可重复性(ICC = 0.92-0.94),尽管与实际 FVC 值相比,重复性较小(ICC =.97)。这些结果表明,持续发声可能是研究和临床环境中 VC 的有用替代物。