Stegmann Gabriela, Charles Sherman, Liss Julie, Shefner Jeremy, Rutkove Seward, Berisha Visar
Arizona State University, Phoenix, AZ, United States.
Aural Analytics, Scottsdale, AZ, United States.
Amyotroph Lateral Scler Frontotemporal Degener. 2023 Jun 12:1-6. doi: 10.1080/21678421.2023.2222144.
: We demonstrated that it was possible to predict ALS patients' degree of future speech impairment based on past data. We used longitudinal data from two ALS studies where participants recorded their speech on a daily or weekly basis and provided ALSFRS-R speech subscores on a weekly or quarterly basis (quarter-annually). : Using their speech recordings, we measured articulatory precision (a measure of the crispness of pronunciation) using an algorithm that analyzed the acoustic signal of each phoneme in the words produced. First, we established the analytical and clinical validity of the measure of articulatory precision, showing that the measure correlated with perceptual ratings of articulatory precision (r = .9). Second, using articulatory precision from speech samples from each participant collected over a 45-90 day model calibration period, we showed it was possible to predict articulatory precision 30-90 days after the last day of the model calibration period. Finally, we showed that the predicted articulatory precision scores mapped onto ALSFRS-R speech subscores. : the mean absolute error was as low as 4% for articulatory precision and 14% for ALSFRS-R speech subscores relative to the total range of their respective scales. : Our results demonstrated that a subject-specific prognostic model for speech predicts future articulatory precision and ALSFRS-R speech values accurately.
我们证明,基于过去的数据可以预测肌萎缩侧索硬化症(ALS)患者未来的言语损伤程度。我们使用了两项ALS研究的纵向数据,参与者每天或每周记录他们的言语,并每周或每季度(每年四次)提供ALS功能评定量表修订版(ALSFRS-R)的言语子评分。使用他们的言语记录,我们通过一种算法测量发音精度(一种发音清晰度的度量),该算法分析所产生单词中每个音素的声学信号。首先,我们确立了发音精度测量的分析和临床有效性,表明该测量与发音精度的感知评分相关(r = 0.9)。其次,使用在45 - 90天模型校准期内从每个参与者收集的言语样本中的发音精度,我们表明可以在模型校准期最后一天之后的30 - 90天预测发音精度。最后,我们表明预测的发音精度分数与ALSFRS-R言语子评分相对应。相对于各自量表的总范围,发音精度的平均绝对误差低至4%,ALSFRS-R言语子评分的平均绝对误差为14%。我们的结果表明,针对言语的个体特异性预后模型能够准确预测未来的发音精度和ALSFRS-R言语值。