Suppr超能文献

肌萎缩侧索硬化症呼吸远程监测声学特征的初步研究

A Preliminary Investigation of Acoustic Features for Remote Monitoring of Respiration in ALS.

作者信息

Connaghan Kathryn P, Eshghi Marziye, Haenssler Abigail E, Green Jordan R, Wang Joycelyn, Scheier Zoe, Keegan Mackenzie, Clark Alison, Onnela Jukka-Pekka, Burke Katherine M, Berry James D

机构信息

Speech and Social Interaction Lab, MGH Institute of Health Professions, Boston, Massachusetts, USA.

Speech, Physiology, and Neurobiology of Aging and Dementia Lab, MGH Institute of Health Professions, Boston, Massachusetts, USA.

出版信息

Muscle Nerve. 2025 Aug;72(2):321-326. doi: 10.1002/mus.28435. Epub 2025 May 14.

Abstract

INTRODUCTION/AIMS: There is a substantial need to establish reliable approaches for low-burden at-home monitoring of respiratory function for people with amyotrophic lateral sclerosis (PALS). This preliminary study assessed the potential of acoustic features extracted from a smartphone passage reading task to serve as clinically meaningful outcome measures reflecting instrumental and self-reported respiratory function measures.

METHODS

Thirty-six PALS completed an in-clinic slow vital capacity (SVC) task, followed by at-home completion of surveys and audio recording of a reading passage using a smartphone application. Speaking rate and pause features were extracted offline. Correlation analysis evaluated the relationship between the acoustic features and both instrumental (SVC) and self-reported (respiratory subscale of the self-entry version of the ALS Functional Rating Scale-Revised; ALSFRS-RSE) measures of respiratory function. Receiver operator characteristic (ROC) with area under the curve (AUC) analysis evaluated the utility of acoustic features for classifying participants with and without respiratory involvement.

RESULTS

SVC and respiratory self-ratings were significantly correlated with pause, but not rate, measures. Percent pause time was the most strongly correlated acoustic feature with both SVC (r = -0.62) and ALSFRS-RSE respiratory subscale ratings (r = -0.43). ROC analysis revealed that percent pause time classified participants presenting with respiratory involvement based on instrumentation (SVC < 70% predicted [AUC = 0.70]; SVC < 50% predicted [AUC = 0.88]) and self-ratings when using the respiratory ALSFRS-RSE score cut-off of < 11 (AUC = 0.78), but not < 12 (AUC = 0.61).

DISCUSSION

Percent pause time, extracted from a smartphone-recorded passage reading, offers a promising index for remote assessment and monitoring of respiratory function in PALS.

摘要

引言/目的:对于肌萎缩侧索硬化症患者(PALS),迫切需要建立可靠的低负担居家呼吸功能监测方法。这项初步研究评估了从智能手机段落朗读任务中提取的声学特征作为反映仪器测量和自我报告的呼吸功能指标的临床有意义结果指标的潜力。

方法

36名PALS完成了门诊慢肺活量(SVC)任务,随后在家中完成问卷调查,并使用智能手机应用程序录制朗读段落的音频。离线提取语速和停顿特征。相关性分析评估了声学特征与仪器测量(SVC)和自我报告(修订版ALS功能评定量表自我录入版的呼吸子量表;ALSFRS-RSE)呼吸功能指标之间的关系。采用曲线下面积(AUC)的受试者工作特征(ROC)分析评估声学特征对有和无呼吸受累参与者进行分类的效用。

结果

SVC和呼吸自我评分与停顿指标显著相关,但与语速指标无关。停顿时间百分比是与SVC(r = -0.62)和ALSFRS-RSE呼吸子量表评分(r = -0.43)相关性最强的声学特征。ROC分析显示,停顿时间百分比可根据仪器测量(SVC <预测值的70%[AUC = 0.70];SVC <预测值的50%[AUC = 0.88])和自我评分(使用呼吸ALSFRS-RSE评分临界值<11时[AUC = 0.78])对有呼吸受累的参与者进行分类,但临界值为<12时(AUC = 0.61)则不能。

讨论

从智能手机录制的段落朗读中提取的停顿时间百分比为远程评估和监测PALS的呼吸功能提供了一个有前景的指标。

相似文献

7
Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease.肌萎缩侧索硬化症/运动神经元病的机械通气
Cochrane Database Syst Rev. 2017 Oct 6;10(10):CD004427. doi: 10.1002/14651858.CD004427.pub4.

本文引用的文献

5
Estimation of forced vital capacity using speech acoustics in patients with ALS.使用语音声学估计 ALS 患者的用力肺活量。
Amyotroph Lateral Scler Frontotemporal Degener. 2021;22(sup1):14-21. doi: 10.1080/21678421.2020.1866013.
9
Reliability and validity of speech & pause measures during passage reading in ALS.肌萎缩侧索硬化症患者朗读过程中言语与停顿测量的信度和效度
Amyotroph Lateral Scler Frontotemporal Degener. 2020 Feb;21(1-2):42-50. doi: 10.1080/21678421.2019.1697888. Epub 2019 Dec 6.
10
Blockchain vehicles for efficient Medical Record management.用于高效病历管理的区块链工具
NPJ Digit Med. 2020 Jan 6;3:1. doi: 10.1038/s41746-019-0211-0. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验