CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Plant Cell. 2021 Oct 11;33(10):3367-3385. doi: 10.1093/plcell/koab198.
Folates are indispensable for plant development, but their molecular mode of action remains elusive. We synthesized a probe, "5-F-THF-Dayne," comprising 5-formyl-tetrahydrofolate (THF) coupled to a photoaffinity tag. Exploiting this probe in an affinity proteomics study in Arabidopsis thaliana, we retrieved 51 hits. Thirty interactions were independently validated with in vitro expressed proteins to bind 5-F-THF with high or low affinity. Interestingly, the interactors reveal associations beyond one-carbon metabolism, covering also connections to nitrogen (N) metabolism, carbohydrate metabolism/photosynthesis, and proteostasis. Two of the interactions, one with the folate biosynthetic enzyme DIHYDROFOLATE REDUCTASE-THYMIDYLATE SYNTHASE 1 (AtDHFR-TS1) and another with N metabolism-associated glutamine synthetase 1;4 (AtGLN1;4), were further characterized. In silico and experimental analyses revealed G35/K36 and E330 as key residues for the binding of 5-F-THF in AtDHFR-TS1 and AtGLN1;4, respectively. Site-directed mutagenesis of AtGLN1;4 E330, which co-localizes with the ATP-binding pocket, abolished 5-F-THF binding as well as AtGLN1;4 activity. Furthermore, 5-F-THF was noted to competitively inhibit the activities of AtDHFR-TS1 and AtGLN1;4. In summary, we demonstrated a regulatory role for 5-F-THF in N metabolism, revealed 5-F-THF-mediated feedback regulation of folate biosynthesis, and identified a total of 14 previously unknown high-affinity binding cellular targets of 5-F-THF. Together, this sets a landmark toward understanding the role of folates in plant development.
叶酸对于植物的发育是不可或缺的,但它们的分子作用模式仍然难以捉摸。我们合成了一种探针,"5-F-THF-Dayne",它由 5-甲酰基四氢叶酸(THF)与光亲和标记物偶联而成。在拟南芥的亲和蛋白质组学研究中利用该探针,我们得到了 51 个靶点。其中 30 个相互作用通过体外表达蛋白进行了独立验证,这些蛋白与 5-F-THF 具有高或低亲和力结合。有趣的是,相互作用体揭示了超出一碳代谢的关联,还包括与氮(N)代谢、碳水化合物代谢/光合作用和蛋白质稳态的连接。其中两个相互作用,一个与叶酸生物合成酶二氢叶酸还原酶-胸苷酸合成酶 1(AtDHFR-TS1)有关,另一个与 N 代谢相关的谷氨酰胺合成酶 1;4(AtGLN1;4)有关,进一步进行了表征。计算机模拟和实验分析表明,G35/K36 和 E330 是 AtDHFR-TS1 和 AtGLN1;4 结合 5-F-THF 的关键残基。AtGLN1;4 E330 的定点突变,该突变与 ATP 结合口袋共定位,不仅消除了 5-F-THF 的结合,也消除了 AtGLN1;4 的活性。此外,5-F-THF 被证明可竞争性抑制 AtDHFR-TS1 和 AtGLN1;4 的活性。总之,我们证明了 5-F-THF 在 N 代谢中的调节作用,揭示了叶酸生物合成的 5-F-THF 介导的反馈调节,并鉴定了 14 个以前未知的 5-F-THF 高亲和力结合细胞靶标。总的来说,这为理解叶酸在植物发育中的作用奠定了基础。