Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain.
Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica, Complutense University, Madrid, 28040, Spain.
J Neurosci. 2021 Sep 22;41(38):7924-7941. doi: 10.1523/JNEUROSCI.0821-21.2021. Epub 2021 Aug 5.
Cannabinoids, the bioactive constituents of cannabis, exert a wide array of effects on the brain by engaging Type 1 cannabinoid receptor (CBR). Accruing evidence supports that cannabinoid action relies on context-dependent factors, such as the biological characteristics of the target cell, suggesting that cell population-intrinsic molecular cues modulate CBR-dependent signaling. Here, by using a yeast two-hybrid-based high-throughput screening, we identified BiP as a potential CBR-interacting protein. We next found that CBR and BiP interact specifically , and mapped the interaction site within the CBR -terminal (intracellular) domain and the BiP -terminal (substrate-binding) domain-α. BiP selectively shaped agonist-evoked CBR signaling by blocking an "alternative" G protein-dependent signaling module while leaving the "classical" G protein-dependent inhibition of the cAMP pathway unaffected. proximity ligation assays conducted on brain samples from various genetic mouse models of conditional loss or gain of CBR expression allowed to map CBR-BiP complexes selectively on terminals of GABAergic neurons. Behavioral studies using cannabinoid-treated male BiP mice supported that CBR-BiP complexes modulate cannabinoid-evoked anxiety, one of the most frequent undesired effects of cannabis. Together, by identifying BiP as a CBR-interacting protein that controls receptor function in a signaling pathway- and neuron population-selective manner, our findings may help to understand the striking context-dependent actions of cannabis in the brain. Cannabis use is increasing worldwide, so innovative studies aimed to understand its complex mechanism of neurobiological action are warranted. Here, we found that cannabinoid CB receptor (CBR), the primary molecular target of the bioactive constituents of cannabis, interacts specifically with an intracellular protein called BiP. The interaction between CBR and BiP occurs selectively on terminals of GABAergic (inhibitory) neurons, and induces a remarkable shift in the CBR-associated signaling profile. Behavioral studies conducted in mice support that CBR-BiP complexes act as fine-tuners of anxiety, one of the most frequent undesired effects of cannabis use. Our findings open a new conceptual framework to understand the striking context-dependent pharmacological actions of cannabis in the brain.
大麻素是大麻的生物活性成分,通过与 1 型大麻素受体(CBR)结合,对大脑产生广泛的影响。越来越多的证据支持大麻素的作用依赖于上下文相关的因素,例如靶细胞的生物学特征,这表明细胞群体内在的分子线索调节 CBR 依赖的信号。在这里,我们使用酵母双杂交为基础的高通量筛选方法,鉴定 BiP 是一种潜在的 CBR 相互作用蛋白。我们发现 CBR 和 BiP 特异性相互作用,并在 CBR 末端(细胞内)结构域和 BiP 末端(底物结合)结构域-α内确定了相互作用位点。BiP 通过阻断“替代”G 蛋白依赖性信号模块选择性地塑造激动剂诱发的 CBR 信号,而不影响“经典”G 蛋白对 cAMP 途径的抑制作用。在各种条件性 CBR 表达缺失或获得的基因小鼠大脑样本中进行的接近连接分析允许在 GABA 能神经元的末端选择性地映射 CBR-BiP 复合物。使用大麻素处理的雄性 BiP 小鼠进行的行为研究支持 CBR-BiP 复合物调节大麻素诱发的焦虑,这是大麻最常见的不良影响之一。总之,通过鉴定 BiP 作为一种 CBR 相互作用蛋白,它以信号通路和神经元群体选择性的方式控制受体功能,我们的研究结果可能有助于理解大麻在大脑中的惊人的上下文依赖性作用。大麻的使用在全球范围内不断增加,因此,进行创新性研究以了解其复杂的神经生物学作用是必要的。在这里,我们发现大麻素 CB 受体(CBR),即大麻生物活性成分的主要分子靶标,与一种称为 BiP 的细胞内蛋白特异性相互作用。CBR 和 BiP 之间的相互作用选择性地发生在 GABA 能(抑制性)神经元的末端,并诱导 CBR 相关信号谱的显著变化。在小鼠中进行的行为研究支持 CBR-BiP 复合物作为焦虑的微调器,这是大麻使用最常见的不良影响之一。我们的研究结果为理解大麻在大脑中的惊人的上下文依赖性药理学作用提供了一个新的概念框架。