Suppr超能文献

多分辨率互助网络在心脏磁共振图像分割中的应用。

Multiresolution Mutual Assistance Network for Cardiac Magnetic Resonance Images Segmentation.

机构信息

School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 518107, China.

出版信息

J Healthc Eng. 2022 Oct 31;2022:5311825. doi: 10.1155/2022/5311825. eCollection 2022.

Abstract

The automatic segmentation of cardiac magnetic resonance (MR) images is the basis for the diagnosis of cardiac-related diseases. However, the segmentation of cardiac MR images is a challenging task due to the inhomogeneity of MR images intensity distribution and the unclear boundaries between adjacent tissues. In this paper, we propose a novel multiresolution mutual assistance network (MMA-Net) for cardiac MR images segmentation. It is mainly composed of multibranch input module, multiresolution mutual assistance module, and multilabel deep supervision. First, the multibranch input module helps the network to extract local and global features more pertinently. Then, the multiresolution mutual assistance module implements multiresolution feature interaction and progressively improves semantic features to more completely express the information of the tissue. Finally, the multilabel deep supervision is proposed to generate the final segmentation map. We compare with state-of-the-art medical image segmentation methods on the medical image computing and computer-assisted intervention (MICCAI) automated cardiac diagnosis challenge datasets and the MICCAI atrial segmentation challenge datasets. The mean dice scores of our method in the left atrium, right ventricle, myocardium, and left ventricle are 0.919, 0.920, 0.881, and 0.960, respectively. The analysis of evaluation indicators and segmentation results shows that our method achieves the best performance in cardiac magnetic resonance images segmentation.

摘要

心脏磁共振(MR)图像的自动分割是诊断心脏相关疾病的基础。然而,由于 MR 图像强度分布的不均匀性和相邻组织之间的边界不清晰,心脏 MR 图像的分割是一项具有挑战性的任务。在本文中,我们提出了一种用于心脏 MR 图像分割的新的多分辨率相互辅助网络(MMA-Net)。它主要由多分支输入模块、多分辨率相互辅助模块和多标签深度监督组成。首先,多分支输入模块帮助网络更准确地提取局部和全局特征。然后,多分辨率相互辅助模块实现多分辨率特征交互,并逐步改进语义特征,以更完整地表达组织信息。最后,提出了多标签深度监督来生成最终的分割图。我们在医学图像计算和计算机辅助干预(MICCAI)自动心脏诊断挑战赛数据集和 MICCAI 心房分割挑战赛数据集上与最先进的医学图像分割方法进行了比较。我们的方法在左心房、右心室、心肌和左心室中的平均骰子分数分别为 0.919、0.920、0.881 和 0.960。评估指标和分割结果的分析表明,我们的方法在心脏磁共振图像分割中取得了最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c75/9640236/883dafcea984/JHE2022-5311825.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验