Smetaczek Stefan, Pycha Eva, Ring Joseph, Siebenhofer Matthäus, Ganschow Steffen, Berendts Stefan, Nenning Andreas, Kubicek Markus, Rettenwander Daniel, Limbeck Andreas, Fleig Jürgen
Institute of Chemical Technologies and Analytics, TU Wien Vienna Austria
Leibniz-Institut für Kristallzüchtung Berlin Germany.
J Mater Chem A Mater. 2021 Jun 17;9(27):15226-15237. doi: 10.1039/d1ta02983e. eCollection 2021 Jul 14.
Cubic LiLaZrO (LLZO) garnets are among the most promising solid electrolytes for solid-state batteries with the potential to exceed conventional battery concepts in terms of energy density and safety. The electrochemical stability of LLZO is crucial for its application, however, controversial reports in the literature show that it is still an unsettled matter. Here, we investigate the electrochemical stability of LLZO single crystals by applying electric field stress macro- and microscopic ionically blocking Au electrodes in ambient air. Induced material changes are subsequently probed using various locally resolved analysis techniques, including microelectrode electrochemical impedance spectroscopy (EIS), laser induced breakdown spectroscopy (LIBS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and microfocus X-ray diffraction (XRD). Our experiments indicate that LLZO decomposes at 4.1-4.3 V Li/Li, leading to the formation of Li-poor phases like LaZrO beneath the positively polarized electrode. The reaction is still on-going even after several days of polarization, indicating that no blocking interfacial layer is formed. The decomposition can be observed at elevated as well as room temperature and suggests that LLZO is truly not compatible with high voltage cathode materials.
立方相LiLaZrO(LLZO)石榴石是固态电池中最有前途的固体电解质之一,在能量密度和安全性方面有潜力超越传统电池概念。LLZO的电化学稳定性对其应用至关重要,然而,文献中的争议性报道表明这仍是一个未解决的问题。在此,我们通过在环境空气中施加电场应力,使用宏观和微观离子阻挡金电极来研究LLZO单晶的电化学稳定性。随后使用各种局域分辨分析技术探测诱导的材料变化,包括微电极电化学阻抗谱(EIS)、激光诱导击穿光谱(LIBS)、激光烧蚀-电感耦合等离子体质谱(LA-ICP-MS)和微聚焦X射线衍射(XRD)。我们的实验表明,LLZO在4.1 - 4.3 V Li/Li下分解,导致在正极化电极下方形成贫锂相,如LaZrO。即使极化几天后反应仍在进行,这表明没有形成阻挡界面层。在高温以及室温下都能观察到这种分解现象,这表明LLZO确实与高压正极材料不相容。