Suppr超能文献

基于时频频谱图和深度学习神经网络特征的垂直地面反作用力分类识别神经退行性疾病

Identification of Neurodegenerative Diseases Based on Vertical Ground Reaction Force Classification Using Time-Frequency Spectrogram and Deep Learning Neural Network Features.

作者信息

Setiawan Febryan, Lin Che-Wei

机构信息

Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan.

Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan.

出版信息

Brain Sci. 2021 Jul 8;11(7):902. doi: 10.3390/brainsci11070902.

Abstract

A novel identification algorithm using a deep learning approach was developed in this study to classify neurodegenerative diseases (NDDs) based on the vertical ground reaction force (vGRF) signal. The irregularity of NDD vGRF signals caused by gait abnormalities can indicate different force pattern variations compared to a healthy control (HC). The main purpose of this research is to help physicians in the early detection of NDDs, efficient treatment planning, and monitoring of disease progression. The detection algorithm comprises a preprocessing process, a feature transformation process, and a classification process. In the preprocessing process, the five-minute vertical ground reaction force signal was divided into 10, 30, and 60 s successive time windows. In the feature transformation process, the time-domain vGRF signal was modified into a time-frequency spectrogram using a continuous wavelet transform (CWT). Then, feature enhancement with principal component analysis (PCA) was utilized. Finally, a convolutional neural network, as a deep learning classifier, was employed in the classification process of the proposed detection algorithm and evaluated using leave-one-out cross-validation (LOOCV) and -fold cross-validation (-fold CV, = 5). The proposed detection algorithm can effectively differentiate gait patterns based on a time-frequency spectrogram of a vGRF signal between HC subjects and patients with neurodegenerative diseases.

摘要

本研究开发了一种使用深度学习方法的新型识别算法,用于基于垂直地面反作用力(vGRF)信号对神经退行性疾病(NDD)进行分类。与健康对照(HC)相比,由步态异常引起的NDD vGRF信号的不规则性可表明不同的力模式变化。本研究的主要目的是帮助医生早期检测NDD、进行有效的治疗规划以及监测疾病进展。检测算法包括预处理过程、特征转换过程和分类过程。在预处理过程中,将五分钟的垂直地面反作用力信号划分为10、30和60秒的连续时间窗口。在特征转换过程中,使用连续小波变换(CWT)将时域vGRF信号转换为时间-频率频谱图。然后,利用主成分分析(PCA)进行特征增强。最后,在提出的检测算法的分类过程中使用卷积神经网络作为深度学习分类器,并使用留一法交叉验证(LOOCV)和五折交叉验证(五折CV,=5)进行评估。所提出的检测算法能够基于vGRF信号的时间-频率频谱图有效地区分HC受试者和神经退行性疾病患者的步态模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3073/8303978/b9e53a79d879/brainsci-11-00902-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验