Suppr超能文献

使用传统图像处理和卷积神经网络方法进行白细胞分类的特征提取研究

Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: a study.

作者信息

Hegde Roopa B, Prasad Keerthana, Hebbar Harishchandra, Singh Brij Mohan Kumar

机构信息

School of Information Sciences, MAHE, Manipal, India.

Department of ECE, NMAMIT, NITTE, Karkala, India.

出版信息

Australas Phys Eng Sci Med. 2019 Jun;42(2):627-638. doi: 10.1007/s13246-019-00742-9. Epub 2019 Mar 4.

Abstract

White blood cells play a vital role in monitoring health condition of a person. Change in count and/or appearance of these cells indicate hematological disorders. Manual microscopic evaluation of white blood cells is the gold standard method, but the result depends on skill and experience of the hematologist. In this paper we present a comparative study of feature extraction using two approaches for classification of white blood cells. In the first approach, features were extracted using traditional image processing method and in the second approach we employed AlexNet which is a pre-trained convolutional neural network as feature generator. We used neural network for classification of WBCs. The results demonstrate that, classification result is slightly better for the features extracted using the convolutional neural network approach compared to traditional image processing approach. The average accuracy and sensitivity of 99% was obtained for classification of white blood cells. Hence, any one of these methods can be used for classification of WBCs depending availability of data and required resources.

摘要

白细胞在监测人体健康状况方面起着至关重要的作用。这些细胞数量和/或外观的变化表明存在血液系统疾病。白细胞的手动显微镜评估是金标准方法,但结果取决于血液学家的技能和经验。在本文中,我们对使用两种方法进行白细胞分类的特征提取进行了比较研究。在第一种方法中,使用传统图像处理方法提取特征,在第二种方法中,我们采用了预训练的卷积神经网络AlexNet作为特征生成器。我们使用神经网络对白细胞进行分类。结果表明,与传统图像处理方法相比,使用卷积神经网络方法提取的特征的分类结果略好。白细胞分类的平均准确率和灵敏度达到了99%。因此,根据数据的可用性和所需资源,这些方法中的任何一种都可用于白细胞的分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验