Fitzgerald Robert S, Rocher Asuncion
Department of Environmental Health & Engineering, The Johns Hopkins University Medical Institutions, Baltimore, MD 21205, USA.
Departamento de Bioquimica y Biología Molecular y Fisiologia, Instituto de Biologia y Genetica Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain.
Antioxidants (Basel). 2021 Jul 12;10(7):1114. doi: 10.3390/antiox10071114.
Oxygen is an essential requirement for metabolism in mammals and many other animals. Therefore, pathways that sense a reduction in available oxygen are critical for organism survival. Higher mammals developed specialized organs to detect and respond to changes in O content to maintain gas homeostasis by balancing oxygen demand and supply. Here, we summarize the various oxygen sensors that have been identified in mammals (carotid body, aortic bodies, and astrocytes), by what mechanisms they detect oxygen and the cellular and molecular aspects of their function on control of respiratory and circulatory O transport that contribute to maintaining normal physiology. Finally, we discuss how dysregulation of oxygen availability leads to elevated signalling sensitivity in these systems and may contribute to the pathogenesis of chronic cardiovascular and respiratory diseases and many other disorders. Hence, too little oxygen, too much oxygen, and a malfunctioning sensitivity of receptors/sensors can create major pathophysiological problems for the organism.
氧气是哺乳动物和许多其他动物新陈代谢的基本需求。因此,感知可用氧气减少的途径对生物体的生存至关重要。高等哺乳动物发育出专门的器官来检测并响应氧气含量的变化,通过平衡氧气需求和供应来维持气体稳态。在此,我们总结了在哺乳动物中已确定的各种氧气传感器(颈动脉体、主动脉体和星形胶质细胞),它们通过何种机制检测氧气以及其功能在控制呼吸和循环氧气运输以维持正常生理方面的细胞和分子层面。最后,我们讨论了氧气供应失调如何导致这些系统中的信号敏感性升高,并可能促成慢性心血管和呼吸系统疾病以及许多其他病症的发病机制。因此,氧气过少、过多以及受体/传感器的敏感性故障都会给生物体带来重大的病理生理问题。