Jones J H
Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis 95616.
Adv Vet Sci Comp Med. 1994;38A:217-51.
The cardiovascular system has frequently been hypothesized to be the limiting step for O2 transport that determines VO2 max in many species of mammals. Careful analysis of the factors that determine how O2 is transported by the circulation demonstrate that such a single-step limitation cannot exist. Evaluation of the results of experiments in which circulatory O2 transport capacity was experimentally altered demonstrates no direct or absolute relationship between changes in O2 transport capacity and changes in VO2 max. Furthermore, experimental evidence collected during maximal exercise in hypoxia and hyperoxia supports the concept that multiple components of the O2 transport system contribute to limiting O2 flux at VO2 max. Consideration of the basic equations that describe O2 transport through the respiratory system shows that changes in PO2 at each step of the system required to increase O2 flux through that step conflict with the changes in PO2 required to increase flux through adjacent steps. Changes in convection, capacitance, or conductance at one step affect gas transport through the adjacent steps. Hence, no single-step limitation to O2 transport is possible, because the convective and diffusive gas exchangers are interdependent. Increasing QT at VO2 max always increases O2 flux (although not necessarily in proportion to the increase in QT), unless VO2 max is limited by mitochondrial oxidative capacity, as in goats. Cardiovascular structure and function in mammals reflects allometric, adaptive and induced variation. Maximal heart rate is determined strictly by body size, thus maximal QT/Mb is inevitably lower in larger mammals. Adaptive and induced variation elicit hypertrophy of muscle, capillaries, and mitochondria, increasing circulatory capacity and VO2 max. When selection for maximal respiratory function is weak, as in most species of mammals, any component(s) of the respiratory system may be underdeveloped, relative to other structures in the system, and contribute disproportionately to limiting O2 flux. When selection for aerobic capacity is strong, as in racehorses, malleable elements of the respiratory system, including the cardiovascular structures, may hypertrophy until their capacities for O2 transport match that of the least malleable structure, the lung. Amplifying circulatory function so greatly in a large animal may lead to functional demand exceeding structural capacity, resulting in the nearly ubiquitous occurrence of exercise-induced pulmonary hemorrhage in racehorses.
心血管系统常常被假定为氧气运输的限制步骤,这决定了许多哺乳动物物种的最大摄氧量。对决定氧气如何通过循环系统运输的因素进行仔细分析表明,这种单一步骤的限制是不存在的。对实验结果的评估显示,在实验中改变循环氧气运输能力时,氧气运输能力的变化与最大摄氧量的变化之间没有直接或绝对的关系。此外,在低氧和高氧状态下进行最大运动时收集的实验证据支持这样一种概念,即氧气运输系统的多个组成部分在最大摄氧量时限制了氧气通量。对描述氧气通过呼吸系统运输的基本方程的考虑表明,为增加通过该步骤的氧气通量而在系统每个步骤所需的PO2变化与为增加通过相邻步骤的通量所需的PO2变化相互冲突。一个步骤中对流、容量或传导性的变化会影响通过相邻步骤的气体运输。因此,对氧气运输不可能存在单一步骤的限制,因为对流和扩散气体交换器是相互依存的。在最大摄氧量时增加心输出量总是会增加氧气通量(尽管不一定与心输出量的增加成比例),除非最大摄氧量像山羊那样受到线粒体氧化能力的限制。哺乳动物的心血管结构和功能反映了异速生长、适应性和诱导性变化。最大心率严格由体型决定,因此较大哺乳动物的最大心输出量/体重不可避免地较低。适应性和诱导性变化会引起肌肉、毛细血管和线粒体的肥大,增加循环能力和最大摄氧量。当对最大呼吸功能的选择较弱时,如在大多数哺乳动物物种中,呼吸系统的任何组成部分相对于系统中的其他结构可能发育不良,并对限制氧气通量有不成比例的贡献。当对有氧能力的选择较强时,如在赛马中,呼吸系统的可塑成分,包括心血管结构,可能会肥大,直到它们的氧气运输能力与最不可塑的结构——肺相匹配。在大型动物中如此大幅度地增强循环功能可能导致功能需求超过结构能力,从而导致赛马中几乎普遍存在运动性肺出血。