Suppr超能文献

缺氧适应的声化学动力学治疗原位胰腺癌使用载超声诱导自由基引发剂的铜金属有机骨架

Hypoxia-Adapted Sono-chemodynamic Treatment of Orthotopic Pancreatic Carcinoma Using Copper Metal-Organic Frameworks Loaded with an Ultrasound-Induced Free Radical Initiator.

机构信息

Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China.

Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China.

出版信息

ACS Appl Mater Interfaces. 2021 Aug 18;13(32):38114-38126. doi: 10.1021/acsami.1c11017. Epub 2021 Aug 6.

Abstract

The efficacy of sonodynamic therapy (SDT) is largely dependent upon oxygen availability to generate deleterious reactive oxygen species, and as such, hypoxic microenvironments greatly constrain the efficacy of SDT. Development of free radical generators that are not dependent on oxygen and related combination treatment strategies thus have the potential to enhance the antitumor potential of SDT. Combined treatment strategies are expected to improve the efficacy of sonodynamic antitumor therapy. As metal-organic framework (MOF) platforms are highly amenable to integration with other therapeutic approaches, we herein report the development of tumor microenvironment (TME)-responsive nanoparticles constructed by embedding the azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (AIPH) into hypoxia-triggered copper metal-organic framework (Cu-MOF) nanovectors to achieve synergistic sono-chemodynamic therapy in an orthotopic murine pancreatic carcinoma model system. When exposed to hypoxic conditions within the TME, this Cu-MOF structure underwent degradation, leading to the release of Cu and AIPH. Cu was then able to deplete local glutathione stores, resulting in the reduction of Cu to Cu, which then reacts with endogenous HO in a Fenton-like reaction to yield cytotoxic hydroxyl radicals (OH) for chemodynamic therapy. When exposed to ultrasound irradiation, AIPH further degraded in an oxygen-independent manner to yield nitrogen bubbles and alkyl radicals, the former of which enhanced the ability of these nanoparticles to penetrate deeply into the tumor. The resultant radicals induced substantial DNA damage and apoptotic cell death within target tumors under different levels of oxygen availability. As such, this hypoxic TME-responsive synergistic sono-chemodynamic approach offers an ideal means of achieving oxygen-independent free radical generation and enhanced treatment efficacy.

摘要

声动力学疗法(SDT)的疗效在很大程度上取决于氧气的可用性,以产生有害的活性氧,因此,缺氧的微环境极大地限制了 SDT 的疗效。开发不依赖于氧气的自由基发生器和相关的联合治疗策略有可能增强 SDT 的抗肿瘤潜力。联合治疗策略有望提高声动力学抗肿瘤治疗的疗效。由于金属-有机骨架(MOF)平台非常适合与其他治疗方法相结合,因此我们在此报告了通过将偶氮引发剂 2,2'-偶氮双[2-(2-咪唑啉-2-基)丙烷]二盐酸盐(AIPH)嵌入缺氧触发的铜金属-有机骨架(Cu-MOF)纳米载体中构建肿瘤微环境(TME)响应性纳米颗粒的开发,以实现在原位小鼠胰腺癌模型系统中协同声化学动力学治疗。当暴露于 TME 中的缺氧条件下时,这种 Cu-MOF 结构发生降解,导致 Cu 和 AIPH 的释放。然后,Cu 能够耗尽局部谷胱甘肽储存,导致 Cu 还原为 Cu,然后在类 Fenton 反应中与内源性 HO 反应生成用于化学动力学治疗的细胞毒性羟基自由基(OH)。当暴露于超声辐射下时,AIPH 以非依赖于氧气的方式进一步降解,产生氮气泡和烷基自由基,前者增强了这些纳米颗粒穿透肿瘤深处的能力。在不同氧气可用性水平下,自由基在靶肿瘤中引起大量 DNA 损伤和凋亡细胞死亡。因此,这种缺氧 TME 响应性协同声化学动力学方法为实现非依赖于氧气的自由基生成和增强治疗效果提供了理想的手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验