文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微管产生电磁场。

Generation of Electromagnetic Field by Microtubules.

机构信息

Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic.

Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague, Czech Republic.

出版信息

Int J Mol Sci. 2021 Jul 30;22(15):8215. doi: 10.3390/ijms22158215.


DOI:10.3390/ijms22158215
PMID:34360980
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8348406/
Abstract

The general mechanism of controlling, information and organization in biological systems is based on the internal coherent electromagnetic field. The electromagnetic field is supposed to be generated by microtubules composed of identical tubulin heterodimers with periodic organization and containing electric dipoles. We used a classical dipole theory of generation of the electromagnetic field to analyze the space-time coherence. The structure of microtubules with the helical and axial periodicity enables the interaction of the field in time shifted by one or more periods of oscillation and generation of coherent signals. Inner cavity excitation should provide equal energy distribution in a microtubule. The supplied energy coherently excites oscillators with a high electrical quality, microtubule inner cavity, and electrons at molecular orbitals and in 'semiconduction' and 'conduction' bands. The suggested mechanism is supposed to be a general phenomenon for a large group of helical systems.

摘要

生物系统中控制、信息和组织的一般机制是基于内部相干电磁场。电磁场被认为是由微管组成的,微管由具有周期性组织且包含电偶极子的相同的微管蛋白异二聚体组成。我们使用电磁场生成的经典偶极子理论来分析时空相干性。微管的螺旋和轴向周期性结构使得场在时间上相互作用,并且通过一个或多个周期的振荡来产生相干信号。内腔激发应该在微管中提供均匀的能量分布。所提供的能量相干地激发具有高电质量、微管内腔以及分子轨道中的电子以及“半导体”和“传导”带中的电子的振荡器。所提出的机制被认为是一大组螺旋系统的普遍现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/ea86e9d80e96/ijms-22-08215-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/d1f02a38aa9a/ijms-22-08215-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/7626733c1447/ijms-22-08215-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/5c131fff37bb/ijms-22-08215-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/61ea40ce9835/ijms-22-08215-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/2ec7f5173811/ijms-22-08215-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/ea86e9d80e96/ijms-22-08215-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/d1f02a38aa9a/ijms-22-08215-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/7626733c1447/ijms-22-08215-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/5c131fff37bb/ijms-22-08215-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/61ea40ce9835/ijms-22-08215-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/2ec7f5173811/ijms-22-08215-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadf/8348406/ea86e9d80e96/ijms-22-08215-g006.jpg

相似文献

[1]
Generation of Electromagnetic Field by Microtubules.

Int J Mol Sci. 2021-7-30

[2]
Electric field generated by axial longitudinal vibration modes of microtubule.

Biosystems. 2010-5

[3]
Postulates on electromagnetic activity in biological systems and cancer.

Integr Biol (Camb). 2013-12

[4]
High-frequency electric field and radiation characteristics of cellular microtubule network.

J Theor Biol. 2011-7-20

[5]
Effect of radio frequency waves of electromagnetic field on the tubulin.

Recent Pat Endocr Metab Immune Drug Discov. 2013-9

[6]
A novel model of interaction between high frequency electromagnetic non-ionizing fields and microtubules viewed as coupled two-degrees of freedom harmonic oscillators.

Curr Top Med Chem. 2015

[7]
Effect of electromagnetic field on the polymerization of microtubules extracted from rat brain.

Recent Pat Endocr Metab Immune Drug Discov. 2012-9

[8]
Biophysical cancer transformation pathway.

Electromagn Biol Med. 2009

[9]
Biophysical aspects of cancer--electromagnetic mechanism.

Indian J Exp Biol. 2008-5

[10]
Comparison of polymerization and structural behavior of microtubules in rat brain and sperm affected by the extremely low-frequency electromagnetic field.

BMC Mol Cell Biol. 2019-8-29

引用本文的文献

[1]
Precise Electromagnetic Modulation of the Cell Cycle and Its Applications in Cancer Therapy.

Int J Mol Sci. 2025-5-7

[2]
Modeling non-genetic information dynamics in cells using reservoir computing.

iScience. 2024-3-28

[3]
Simultaneity of consciousness with physical reality: the key that unlocks the mind-matter problem.

Front Psychol. 2023-9-28

[4]
A Swine Model of Neural Circuit Electromagnetic Fields: Effects of Immediate Electromagnetic Field Stimulation on Cortical Injury.

Cureus. 2023-8-19

本文引用的文献

[1]
Electrophysiology using coaxial atom probe array: live imaging reveals hidden circuits of a hippocampal neural network.

J Neurophysiol. 2021-6-1

[2]
Microtubules as Sub-Cellular Memristors.

Sci Rep. 2020-2-7

[3]
The future of quantum biology.

J R Soc Interface. 2018-11-14

[4]
Nonlinearity, coherence and complexity: Biophysical aspects related to health and disease.

Electromagn Biol Med. 2017

[5]
Anesthetic Alterations of Collective Terahertz Oscillations in Tubulin Correlate with Clinical Potency: Implications for Anesthetic Action and Post-Operative Cognitive Dysfunction.

Sci Rep. 2017-8-29

[6]
Warburg effect-damping of electromagnetic oscillations.

Electromagn Biol Med. 2017

[7]
Energy parasites trigger oncogene mutation.

Int J Radiat Biol. 2016-10

[8]
Revisiting the mitogenetic effect of ultra-weak photon emission.

Front Physiol. 2015-9-7

[9]
Detecting nanoscale vibrations as signature of life.

Proc Natl Acad Sci U S A. 2014-12-29

[10]
Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule.

Sci Rep. 2014-12-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索