Suppr超能文献

基于层次密度分配的马尔可夫状态模型。

Markov state models from hierarchical density-based assignment.

机构信息

Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU & Donostia International Physics Center (DIPC), PK 1072, 20018 Donostia-San Sebastian, Euskadi, Spain.

出版信息

J Chem Phys. 2021 Aug 7;155(5):054102. doi: 10.1063/5.0056748.

Abstract

Markov state models (MSMs) have become one of the preferred methods for the analysis and interpretation of molecular dynamics (MD) simulations of conformational transitions in biopolymers. While there is great variation in terms of implementation, a well-defined workflow involving multiple steps is often adopted. Typically, molecular coordinates are first subjected to dimensionality reduction and then clustered into small "microstates," which are subsequently lumped into "macrostates" using the information from the slowest eigenmodes. However, the microstate dynamics is often non-Markovian, and long lag times are required to converge the relevant slow dynamics in the MSM. Here, we propose a variation on this typical workflow, taking advantage of hierarchical density-based clustering. When applied to simulation data, this type of clustering separates high population regions of conformational space from others that are rarely visited. In this way, density-based clustering naturally implements assignment of the data based on transitions between metastable states, resulting in a core-set MSM. As a result, the state definition becomes more consistent with the assumption of Markovianity, and the timescales of the slow dynamics of the system are recovered more effectively. We present results of this simplified workflow for a model potential and MD simulations of the alanine dipeptide and the FiP35 WW domain.

摘要

马科夫状态模型(MSMs)已经成为分析和解释生物聚合物构象转变分子动力学(MD)模拟的首选方法之一。虽然在实现方面存在很大差异,但通常采用一个定义明确的、涉及多个步骤的工作流程。通常,首先对分子坐标进行降维处理,然后将其聚类成小的“微状态”,然后使用最慢本征模态的信息将其合并为“宏状态”。然而,微状态动力学通常是非马尔可夫的,并且需要长的滞后时间来收敛 MSM 中的相关慢动力学。在这里,我们提出了这种典型工作流程的一种变体,利用分层基于密度的聚类。当应用于模拟数据时,这种类型的聚类将构象空间的高种群区域与其他很少访问的区域分开。通过这种方式,基于密度的聚类自然地根据亚稳状态之间的跃迁来对数据进行分配,从而产生一个核心集 MSM。结果,状态定义与马尔可夫性的假设更加一致,并且系统的慢动力学的时间尺度得到了更有效的恢复。我们为模型势和丙氨酸二肽以及 FiP35 WW 结构域的 MD 模拟展示了这个简化工作流程的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验