Suppr超能文献

层次 Nyström 方法用于构建构象动力学的 Markov 状态模型。

Hierarchical Nyström methods for constructing Markov state models for conformational dynamics.

机构信息

School of Mathematical Sciences, LMAM-LMEQF-LMPR, Peking University, Beijing 100871, China.

出版信息

J Chem Phys. 2013 May 7;138(17):174106. doi: 10.1063/1.4802007.

Abstract

Markov state models (MSMs) have become a popular approach for investigating the conformational dynamics of proteins and other biomolecules. MSMs are typically built from numerous molecular dynamics simulations by dividing the sampled configurations into a large number of microstates based on geometric criteria. The resulting microstate model can then be coarse-grained into a more understandable macrostate model by lumping together rapidly mixing microstates into larger, metastable aggregates. However, finite sampling often results in the creation of many poorly sampled microstates. During coarse-graining, these states are mistakenly identified as being kinetically important because transitions to/from them appear to be slow. In this paper, we propose a formalism based on an algebraic principle for matrix approximation, i.e., the Nyström method, to deal with such poorly sampled microstates. Our scheme builds a hierarchy of microstates from high to low populations and progressively applies spectral clustering on sets of microstates within each level of the hierarchy. It helps spectral clustering identify metastable aggregates with highly populated microstates rather than being distracted by lowly populated states. We demonstrate the ability of this algorithm to discover the major metastable states on two model systems, the alanine dipeptide and trpzip2 peptide.

摘要

马科夫状态模型(MSMs)已成为研究蛋白质和其他生物分子构象动力学的一种流行方法。MSMs 通常是通过将采样配置根据几何标准划分为大量微状态,从大量分子动力学模拟中构建的。然后,通过将快速混合的微状态合并为更大的、亚稳态聚集体,将所得的微状态模型粗粒化为更易于理解的宏状态模型。然而,有限的采样通常会导致许多采样不足的微状态的产生。在粗粒化过程中,这些状态会被错误地识别为具有动力学重要性,因为从它们到它们的转变似乎很慢。在本文中,我们提出了一种基于矩阵逼近的代数原理的形式主义,即 Nyström 方法,以处理这些采样不足的微状态。我们的方案从高到低的种群构建微状态层次结构,并在层次结构的每个级别上逐步对微状态集应用谱聚类。它有助于谱聚类识别具有高种群的亚稳态聚集体,而不是被低种群的状态所分散注意力。我们展示了该算法在两个模型系统(丙氨酸二肽和 trpzip2 肽)上发现主要亚稳态的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验