Suppr超能文献

网络上因果效应的自动G计算

Auto-G-Computation of Causal Effects on a Network.

作者信息

Tchetgen Tchetgen Eric J, Fulcher Isabel R, Shpitser Ilya

机构信息

Department of Statistics, Wharton School of the University of Pennsylvania, Philadelphia, PA.

Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA.

出版信息

J Am Stat Assoc. 2021;116(534):833-844. doi: 10.1080/01621459.2020.1811098. Epub 2020 Oct 1.

Abstract

Methods for inferring average causal effects have traditionally relied on two key assumptions: (i) the intervention received by one unit cannot causally influence the outcome of another; and (ii) units can be organized into nonoverlapping groups such that outcomes of units in separate groups are independent. In this article, we develop new statistical methods for causal inference based on a single realization of a network of connected units for which neither assumption (i) nor (ii) holds. The proposed approach allows both for arbitrary forms of interference, whereby the outcome of a unit may depend on interventions received by other units with whom a network path through connected units exists; and long range dependence, whereby outcomes for any two units likewise connected by a path in the network may be dependent. Under network versions of consistency and no unobserved confounding, inference is made tractable by an assumption that the networks outcome, treatment and covariate vectors are a single realization of a certain chain graph model. This assumption allows inferences about various network causal effects via the , a network generalization of Robins' well-known g-computation algorithm previously described for causal inference under assumptions (i) and (ii). Supplementary materials for this article are available online.

摘要

传统上,推断平均因果效应的方法依赖于两个关键假设:(i)一个单元接受的干预不会对另一个单元的结果产生因果影响;(ii)单元可以被组织成不重叠的组,使得不同组中单元的结果是独立的。在本文中,我们基于连接单元网络的单个实现,开发了用于因果推断的新统计方法,其中假设(i)和(ii)均不成立。所提出的方法既允许任意形式的干扰,即一个单元的结果可能取决于通过连接单元与该单元存在网络路径的其他单元所接受的干预;也允许长程依赖,即通过网络中的路径同样相连的任意两个单元的结果可能是相关的。在一致性和无未观察到的混杂因素的网络版本下,通过假设网络结果、处理和协变量向量是某个链图模型的单个实现,使得推断变得易于处理。这个假设允许通过 (一种网络推广的罗宾斯著名的g - 计算算法,该算法先前在假设(i)和(ii)下用于因果推断)来推断各种网络因果效应。本文的补充材料可在线获取。

相似文献

1
Auto-G-Computation of Causal Effects on a Network.
J Am Stat Assoc. 2021;116(534):833-844. doi: 10.1080/01621459.2020.1811098. Epub 2020 Oct 1.
3
Causal Inference for a Population of Causally Connected Units.
J Causal Inference. 2014 Mar;2(1):13-74. doi: 10.1515/jci-2013-0002.
4
Identification and Estimation Of Causal Effects from Dependent Data.
Adv Neural Inf Process Syst. 2018 Dec;2018:9446-9457.
5
Causal inference over stochastic networks.
J R Stat Soc Ser A Stat Soc. 2024 Jan 25;187(3):772-795. doi: 10.1093/jrsssa/qnae001. eCollection 2024 Aug.
6
Causal Artificial Intelligence Models of Food Quality Data.
Food Technol Biotechnol. 2024 Mar;62(1):102-109. doi: 10.17113/ftb.62.01.24.8301.
7
Causal Inference in the Presence of Interference in Sponsored Search Advertising.
Front Big Data. 2022 Jun 21;5:888592. doi: 10.3389/fdata.2022.888592. eCollection 2022.
8
Network experiment designs for inferring causal effects under interference.
Front Big Data. 2023 Apr 17;6:1128649. doi: 10.3389/fdata.2023.1128649. eCollection 2023.
9
Practice of causal inference with the propensity of being zero or one: assessing the effect of arbitrary cutoffs of propensity scores.
Commun Stat Appl Methods. 2016 Jan;23(1):1-20. doi: 10.5351/CSAM.2016.23.1.001. Epub 2016 Jan 31.
10
Causal inference, social networks and chain graphs.
J R Stat Soc Ser A Stat Soc. 2020 Oct;183(4):1659-1676. doi: 10.1111/rssa.12594. Epub 2020 Jul 18.

引用本文的文献

3
Causal inference over stochastic networks.
J R Stat Soc Ser A Stat Soc. 2024 Jan 25;187(3):772-795. doi: 10.1093/jrsssa/qnae001. eCollection 2024 Aug.
4
Network spillover effects associated with the ChooseWell 365 workplace randomized controlled trial to promote healthy food choices.
Soc Sci Med. 2024 Aug;355:117033. doi: 10.1016/j.socscimed.2024.117033. Epub 2024 Jun 27.
5
Causal Inference for Social Network Data.
J Am Stat Assoc. 2024;119(545):597-611. doi: 10.1080/01621459.2022.2131557. Epub 2022 Dec 12.
6
Identification and estimation of causal peer effects using double negative controls for unmeasured network confounding.
J R Stat Soc Series B Stat Methodol. 2023 Dec 15;86(2):487-511. doi: 10.1093/jrsssb/qkad132. eCollection 2024 Apr.
7
The Effect of Family Wealth on Physical Function Among Older Adults in Mpumalanga, South Africa: A Causal Network Analysis.
Int J Public Health. 2023 Oct 25;68:1606072. doi: 10.3389/ijph.2023.1606072. eCollection 2023.
8
Causal models and causal modelling in obesity: foundations, methods and evidence.
Philos Trans R Soc Lond B Biol Sci. 2023 Oct 23;378(1888):20220227. doi: 10.1098/rstb.2022.0227. Epub 2023 Sep 4.
9
Taking the problem of colliders seriously in the study of crime: A research note.
J Exp Criminol. 2023 Mar 30:1-10. doi: 10.1007/s11292-023-09565-x.
10
A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications.
Int Stat Rev. 2021 Dec;89(3):605-634. doi: 10.1111/insr.12452. Epub 2021 May 31.

本文引用的文献

1
Causal Inference for Social Network Data.
J Am Stat Assoc. 2024;119(545):597-611. doi: 10.1080/01621459.2022.2131557. Epub 2022 Dec 12.
3
On inverse probability-weighted estimators in the presence of interference.
Biometrika. 2016 Dec;103(4):829-842. doi: 10.1093/biomet/asw047. Epub 2016 Dec 8.
5
Dependent Happenings: A Recent Methodological Review.
Curr Epidemiol Rep. 2016 Dec;3(4):297-305. doi: 10.1007/s40471-016-0086-4. Epub 2016 Jul 28.
6
Inference with interference between units in an fMRI experiment of motor inhibition.
J Am Stat Assoc. 2012;107(498):530-541. doi: 10.1080/01621459.2012.655954.
7
Interference and Sensitivity Analysis.
Stat Sci. 2014 Nov;29(4):687-706. doi: 10.1214/14-STS479.
8
Large sample randomization inference of causal effects in the presence of interference.
J Am Stat Assoc. 2014 Jan 1;109(505):288-301. doi: 10.1080/01621459.2013.844698.
9
10
The parametric g-formula to estimate the effect of highly active antiretroviral therapy on incident AIDS or death.
Stat Med. 2012 Aug 15;31(18):2000-9. doi: 10.1002/sim.5316. Epub 2012 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验