Suppr超能文献

二分法干扰与空气污染传输:评估发电厂干预措施对健康的影响。

Bipartite interference and air pollution transport: estimating health effects of power plant interventions.

作者信息

Zigler Corwin, Liu Vera, Mealli Fabrizia, Forastiere Laura

机构信息

Department of Biostatistics, Brown University School of Public Health 121 S. Main St, Providence, RI 02903, United States.

Department of Statistics and Data Sciences, University of Texas at Austin, 105 E 24th St D9800, Austin, TX 78705, United States.

出版信息

Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae051.

Abstract

Evaluating air quality interventions is confronted with the challenge of interference since interventions at a particular pollution source likely impact air quality and health at distant locations, and air quality and health at any given location are likely impacted by interventions at many sources. The structure of interference in this context is dictated by complex atmospheric processes governing how pollution emitted from a particular source is transformed and transported across space and can be cast with a bipartite structure reflecting the two distinct types of units: (i) interventional units on which treatments are applied or withheld to change pollution emissions; and (ii) outcome units on which outcomes of primary interest are measured. We propose new estimands for bipartite causal inference with interference that construe two components of treatment: a "key-associated" (or "individual") treatment and an "upwind" (or "neighborhood") treatment. Estimation is carried out using a covariate adjustment approach based on a joint propensity score. A reduced-complexity atmospheric model characterizes the structure of the interference network by modeling the movement of air parcels through time and space. The new methods are deployed to evaluate the effectiveness of installing flue-gas desulfurization scrubbers on 472 coal-burning power plants (the interventional units) in reducing Medicare hospitalizations among 21,577,552 Medicare beneficiaries residing across 25,553 ZIP codes in the United States (the outcome units).

摘要

评估空气质量干预措施面临着干扰问题,因为对特定污染源的干预可能会影响到远处的空气质量和健康状况,而且任何给定地点的空气质量和健康状况都可能受到多个污染源干预措施的影响。在这种情况下,干扰的结构由复杂的大气过程决定,这些过程控制着从特定污染源排放的污染物如何在空间中转化和传输,并且可以用一种二分结构来描述,该结构反映了两种不同类型的单元:(i)应用或不应用处理以改变污染物排放的干预单元;(ii)测量主要关注结果的结果单元。我们提出了用于具有干扰的二分因果推断的新估计量,该估计量将处理的两个组成部分解释为:“关键相关”(或“个体”)处理和“上风”(或“邻域”)处理。估计是使用基于联合倾向得分的协变量调整方法进行的。一个复杂度降低的大气模型通过对空气团随时间和空间的移动进行建模来描述干扰网络的结构。这些新方法被用于评估在美国25553个邮政编码区域内居住的21577552名医疗保险受益人中,472家燃煤发电厂(干预单元)安装烟气脱硫洗涤器在减少医疗保险住院人数方面的有效性(结果单元)。

相似文献

本文引用的文献

2
Causal Inference for Social Network Data.社交网络数据的因果推断
J Am Stat Assoc. 2024;119(545):597-611. doi: 10.1080/01621459.2022.2131557. Epub 2022 Dec 12.
3
Nonrandom Exposure to Exogenous Shocks.非随机暴露于外源性冲击。
Econometrica. 2023 Nov;91(6):2155-2185. doi: 10.3982/ecta19367.
4
Mortality risk from United States coal electricity generation.美国煤电生产的死亡率风险。
Science. 2023 Nov 24;382(6673):941-946. doi: 10.1126/science.adf4915. Epub 2023 Nov 23.
5
Bayesian causal inference: a critical review.贝叶斯因果推断:批判性回顾。
Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220153. doi: 10.1098/rsta.2022.0153. Epub 2023 Mar 27.
7
AVERAGE TREATMENT EFFECTS IN THE PRESENCE OF UNKNOWN INTERFERENCE.存在未知干扰时的平均治疗效果。
Ann Stat. 2021 Apr;49(2):673-701. doi: 10.1214/20-aos1973. Epub 2021 Apr 2.
8
Auto-G-Computation of Causal Effects on a Network.网络上因果效应的自动G计算
J Am Stat Assoc. 2021;116(534):833-844. doi: 10.1080/01621459.2020.1811098. Epub 2020 Oct 1.
9
Bipartite Causal Inference with Interference.具有干扰的二分因果推断
Stat Sci. 2021 Feb;36(1):109-123. doi: 10.1214/19-sts749. Epub 2020 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验