Suppr超能文献

存在干扰情况下因果效应的大样本随机化推断

Large sample randomization inference of causal effects in the presence of interference.

作者信息

Liu Lan, Hudgens Michael G

机构信息

Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599.

出版信息

J Am Stat Assoc. 2014 Jan 1;109(505):288-301. doi: 10.1080/01621459.2013.844698.

Abstract

Recently, increasing attention has focused on making causal inference when interference is possible. In the presence of interference, treatment may have several types of effects. In this paper, we consider inference about such effects when the population consists of groups of individuals where interference is possible within groups but not between groups. A two stage randomization design is assumed where in the first stage groups are randomized to different treatment allocation strategies and in the second stage individuals are randomized to treatment or control conditional on the strategy assigned to their group in the first stage. For this design, the asymptotic distributions of estimators of the causal effects are derived when either the number of individuals per group or the number of groups grows large. Under certain homogeneity assumptions, the asymptotic distributions provide justification for Wald-type confidence intervals (CIs) and tests. Empirical results demonstrate the Wald CIs have good coverage in finite samples and are narrower than CIs based on either the Chebyshev or Hoeffding inequalities provided the number of groups is not too small. The methods are illustrated by two examples which consider the effects of cholera vaccination and an intervention to encourage voting.

摘要

最近,当可能存在干扰时,越来越多的关注集中在进行因果推断上。在存在干扰的情况下,治疗可能有几种类型的效果。在本文中,当总体由个体组组成,且组内可能存在干扰而组间不存在干扰时,我们考虑对这类效果进行推断。假设采用两阶段随机化设计,在第一阶段,组被随机分配到不同的治疗分配策略,在第二阶段,个体根据其组在第一阶段分配的策略被随机分配到治疗组或对照组。对于这种设计,当每组个体数量或组数变大时,推导了因果效应估计量的渐近分布。在某些同质性假设下,渐近分布为 Wald 型置信区间(CIs)和检验提供了依据。实证结果表明,Wald 置信区间在有限样本中具有良好的覆盖率,并且在组数不太小的情况下,比基于切比雪夫不等式或 Hoeffding 不等式的置信区间更窄。通过两个例子说明了这些方法,这两个例子分别考虑了霍乱疫苗接种的效果和一项鼓励投票的干预措施。

相似文献

1
Large sample randomization inference of causal effects in the presence of interference.
J Am Stat Assoc. 2014 Jan 1;109(505):288-301. doi: 10.1080/01621459.2013.844698.
3
On inverse probability-weighted estimators in the presence of interference.
Biometrika. 2016 Dec;103(4):829-842. doi: 10.1093/biomet/asw047. Epub 2016 Dec 8.
4
Exact Confidence Intervals in the Presence of Interference.
Stat Probab Lett. 2015 Oct 1;105:130-135. doi: 10.1016/j.spl.2015.06.011.
5
Assessing effects of cholera vaccination in the presence of interference.
Biometrics. 2014 Sep;70(3):731-44. doi: 10.1111/biom.12184. Epub 2014 May 20.
6
Toward Causal Inference With Interference.
J Am Stat Assoc. 2008 Jun;103(482):832-842. doi: 10.1198/016214508000000292.
7
Randomization inference with general interference and censoring.
Biometrics. 2020 Mar;76(1):235-245. doi: 10.1111/biom.13125. Epub 2019 Oct 15.
8
Randomization inference for treatment effects on a binary outcome.
Stat Med. 2015 Mar 15;34(6):924-35. doi: 10.1002/sim.6384. Epub 2014 Dec 4.
9
Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring.
Biometrics. 2022 Jun;78(2):777-788. doi: 10.1111/biom.13459. Epub 2021 Apr 14.
10
A simulation study for comparing testing statistics in response-adaptive randomization.
BMC Med Res Methodol. 2010 Jun 5;10:48. doi: 10.1186/1471-2288-10-48.

引用本文的文献

1
CAUSAL HEALTH IMPACTS OF POWER PLANT EMISSION CONTROLS UNDER MODELED AND UNCERTAIN PHYSICAL PROCESS INTERFERENCE.
Ann Appl Stat. 2024 Dec;18(4):2753-2774. doi: 10.1214/24-aoas1904. Epub 2024 Oct 31.
2
Revisiting the effects of maternal education on adolescents' academic performance: Doubly robust estimation in a network-based observational study.
J R Stat Soc Ser C Appl Stat. 2024 Feb 13;73(3):715-734. doi: 10.1093/jrsssc/qlae008. eCollection 2024 Jun.
5
Estimating the total treatment effect in randomized experiments with unknown network structure.
Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2208975119. doi: 10.1073/pnas.2208975119. Epub 2022 Oct 24.
6
Generalized propensity score approach to causal inference with spatial interference.
Biometrics. 2023 Sep;79(3):2220-2231. doi: 10.1111/biom.13745. Epub 2022 Sep 19.
7
Using social contact data to improve the overall effect estimate of a cluster-randomized influenza vaccination program in Senegal.
J R Stat Soc Ser C Appl Stat. 2022 Jan;71(1):70-90. doi: 10.1111/rssc.12522. Epub 2021 Sep 22.
9
AVERAGE TREATMENT EFFECTS IN THE PRESENCE OF UNKNOWN INTERFERENCE.
Ann Stat. 2021 Apr;49(2):673-701. doi: 10.1214/20-aos1973. Epub 2021 Apr 2.
10
Auto-G-Computation of Causal Effects on a Network.
J Am Stat Assoc. 2021;116(534):833-844. doi: 10.1080/01621459.2020.1811098. Epub 2020 Oct 1.

本文引用的文献

1
Inference with interference between units in an fMRI experiment of motor inhibition.
J Am Stat Assoc. 2012;107(498):530-541. doi: 10.1080/01621459.2012.655954.
2
A mapping between interactions and interference: implications for vaccine trials.
Epidemiology. 2012 Mar;23(2):285-92. doi: 10.1097/EDE.0b013e318245c4ac.
4
Effect partitioning under interference in two-stage randomized vaccine trials.
Stat Probab Lett. 2011 Jul 1;81(7):861-869. doi: 10.1016/j.spl.2011.02.019.
5
On causal inference in the presence of interference.
Stat Methods Med Res. 2012 Feb;21(1):55-75. doi: 10.1177/0962280210386779. Epub 2010 Nov 10.
6
A cluster-randomized effectiveness trial of Vi typhoid vaccine in India.
N Engl J Med. 2009 Jul 23;361(4):335-44. doi: 10.1056/NEJMoa0807521.
7
Toward Causal Inference With Interference.
J Am Stat Assoc. 2008 Jun;103(482):832-842. doi: 10.1198/016214508000000292.
10
Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis.
Lancet. 2005;366(9479):44-9. doi: 10.1016/S0140-6736(05)66550-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验