Suppr超能文献

基因表达荟萃分析揭示了与 SARS 感染肺部相关的干扰素诱导基因。

Gene Expression Meta-Analysis Reveals Interferon-Induced Genes Associated With SARS Infection in Lungs.

机构信息

Harris Interdisciplinary Research, Davenport University, Grand Rapids, MI, United States.

Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI, United States.

出版信息

Front Immunol. 2021 Jul 23;12:694355. doi: 10.3389/fimmu.2021.694355. eCollection 2021.

Abstract

BACKGROUND

Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are a serious public health threat because of their pandemic-causing potential. This work is the first to analyze mRNA expression data from SARS infections through meta-analysis of gene signatures, possibly identifying therapeutic targets associated with major SARS infections.

METHODS

This work defines 37 gene signatures representing SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV2 infections in human lung cultures and/or mouse lung cultures or samples and compares them through Gene Set Enrichment Analysis (GSEA). To do this, positive and negative infectious clone SARS (icSARS) gene panels are defined from GSEA-identified leading-edge genes between two icSARS-CoV derived signatures, both from human cultures. GSEA then is used to assess enrichment and identify leading-edge icSARS panel genes between icSARS gene panels and 27 other SARS-CoV gene signatures. The meta-analysis is expanded to include five MERS-CoV and three SARS-CoV2 gene signatures. Genes associated with SARS infection are predicted by examining the intersecting membership of GSEA-identified leading-edges across gene signatures.

RESULTS

Significant enrichment (GSEA p<0.001) is observed between two icSARS-CoV derived signatures, and those leading-edge genes defined the positive (233 genes) and negative (114 genes) icSARS panels. Non-random significant enrichment (null distribution p<0.001) is observed between icSARS panels and all verification icSARSvsmock signatures derived from human cultures, from which 51 over- and 22 under-expressed genes are shared across leading-edges with 10 over-expressed genes already associated with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random significant enrichment held for only the positive icSARS panel, from which nine genes are shared with icSARS infection in human cultures. Considering other SARS strains, significant, non-random enrichment (p<0.05) is observed across signatures derived from other SARS strains for the positive icSARS panel. Five positive icSARS panel genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, are found across mice and human signatures regardless of SARS strains.

CONCLUSION

The GSEA-based meta-analysis approach used here identifies genes with and without reported associations with SARS-CoV infections, highlighting this approach's predictability and usefulness in identifying genes that have potential as therapeutic targets to preclude or overcome SARS infections.

摘要

背景

严重急性呼吸综合征(SARS)冠状病毒(CoV)感染是一种严重的公共卫生威胁,因为它们具有引起大流行的潜力。这项工作是首次通过对基因特征进行荟萃分析来分析 SARS 感染的 mRNA 表达数据,可能确定与主要 SARS 感染相关的治疗靶点。

方法

这项工作定义了 37 个代表 SARS-CoV、中东呼吸综合征(MERS)-CoV 和 SARS-CoV2 感染的基因特征,分别在人类肺培养物和/或小鼠肺培养物或样本中,并通过基因集富集分析(GSEA)进行比较。为此,从两个源自 icSARS-CoV 的 GSEA 鉴定的前沿基因的 icSARS 阳性和阴性感染克隆(icSARS)基因图谱中定义了正(233 个基因)和负(114 个基因)icSARS 图谱。然后,GSEA 用于评估富集并确定 icSARS 基因图谱与 27 个其他 SARS-CoV 基因图谱之间的前沿 icSARS 图谱基因。荟萃分析扩展到包括五个 MERS-CoV 和三个 SARS-CoV2 基因图谱。通过检查 GSEA 鉴定的前沿基因在基因图谱中的交叉成员关系,预测与 SARS 感染相关的基因。

结果

在两个源自 icSARS-CoV 的特征之间观察到显著的富集(GSEA p<0.001),这些前沿基因定义了阳性(233 个基因)和阴性(114 个基因)icSARS 图谱。在 icSARS 图谱和所有源自人类培养物的验证 icSARSvsmock 图谱之间观察到非随机显著富集(null 分布 p<0.001),其中跨越前沿的 51 个过表达和 22 个低表达基因与已经与 icSARS 感染相关的 10 个过表达基因共享。对于 icSARSvsmock 小鼠图谱,仅阳性 icSARS 图谱具有显著的、非随机的显著富集,其中 9 个基因与人类培养物中的 icSARS 感染共享。对于其他 SARS 株,阳性 icSARS 图谱在源自其他 SARS 株的图谱中观察到显著的、非随机的富集(p<0.05)。跨越小鼠和人类图谱的五个阳性 icSARS 图谱基因,CXCL10、OAS3、OASL、IFIT3 和 XAF1,无论 SARS 株如何,均有发现。

结论

这里使用的基于 GSEA 的荟萃分析方法确定了具有和不具有与 SARS-CoV 感染相关报告的基因,突出了该方法在识别具有作为治疗靶点潜力的基因以预防或克服 SARS 感染方面的可预测性和有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7563/8342995/13f5e5887e22/fimmu-12-694355-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验