Suppr超能文献

基于自表示的模糊 SVM 模型用于预测血液透析患者的血管钙化。

A Self-Representation-Based Fuzzy SVM Model for Predicting Vascular Calcification of Hemodialysis Patients.

机构信息

Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023, Wuxi, China.

School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China.

出版信息

Comput Math Methods Med. 2021 Jul 27;2021:2464821. doi: 10.1155/2021/2464821. eCollection 2021.

Abstract

In end-stage renal disease (ESRD), vascular calcification risk factors are essential for the survival of hemodialysis patients. To effectively assess the level of vascular calcification, the machine learning algorithm can be used to predict the vascular calcification risk in ESRD patients. As the amount of collected data is unbalanced under different risk levels, it has an influence on the classification task. So, an effective fuzzy support vector machine based on self-representation (FSVM-SR) is proposed to predict vascular calcification risk in this work. In addition, our method is also compared with other conventional machine learning methods, and the results show that our method can better complete the classification task of the vascular calcification risk.

摘要

在终末期肾病(ESRD)中,血管钙化的危险因素对血液透析患者的生存至关重要。为了有效评估血管钙化的程度,可以使用机器学习算法预测 ESRD 患者的血管钙化风险。由于不同风险水平下收集的数据量不平衡,因此会对分类任务产生影响。因此,本工作提出了一种基于自表示的有效模糊支持向量机(FSVM-SR)来预测血管钙化风险。此外,还将我们的方法与其他常规机器学习方法进行了比较,结果表明,我们的方法可以更好地完成血管钙化风险的分类任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53fc/8337133/4be42d9c3ead/CMMM2021-2464821.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验