Suppr超能文献

使用基因表达数据对图形模型进行无模型估计。

MODEL FREE ESTIMATION OF GRAPHICAL MODEL USING GENE EXPRESSION DATA.

作者信息

Yang Jenny, Liu Yang, Liu Yufeng, Sun Wei

机构信息

University of North Carolina at Chapel Hill.

Wright State University.

出版信息

Ann Appl Stat. 2021 Mar;15(1):194-207. doi: 10.1214/20-AOAS1380. Epub 2021 Mar 18.

Abstract

Graphical model is a powerful and popular approach to study high-dimensional omic data, such as genome-wide gene expression data. Nonlinear relations between genes are widely documented. However, partly due to sparsity of data points in high dimensional space (i.e., curse of dimensionality) and computational challenges, most available methods construct graphical models by testing linear relations. We propose to address this challenge by a two-step approach: first use a model-free approach to prioritize the neighborhood of each gene, then apply a non-parametric conditional independence testing method to refine such neighborhood estimation. Our method, named as "mofreds" (MOdel FRee Estimation of DAG Skeletons), seeks to estimate the skeleton of a directed acyclic graph (DAG) by this two-step approach. We studied the theoretical properties of mofreds, and evaluated its performance in extensive simulation settings. We found mofreds has substantially better performance than the state-of-the art method which is designed to detect linear relations of Gaussian graphical models. We applied mofreds to analyze gene expression data of breast cancer patients from The Cancer Genome Atlas (TCGA). We found that it discovers non-linear relationships among gene pairs that are missed by the Gaussian graphical model methods.

摘要

图形模型是研究高维组学数据(如全基因组基因表达数据)的一种强大且流行的方法。基因之间的非线性关系已被广泛记录。然而,部分由于高维空间中数据点的稀疏性(即维度诅咒)和计算挑战,大多数现有方法通过测试线性关系来构建图形模型。我们提出通过两步法来应对这一挑战:首先使用无模型方法对每个基因的邻域进行优先级排序,然后应用非参数条件独立性测试方法来细化这种邻域估计。我们的方法名为“mofreds”(有向无环图骨架的无模型估计),旨在通过这种两步法估计有向无环图(DAG)的骨架。我们研究了mofreds的理论性质,并在广泛的模拟设置中评估了其性能。我们发现mofreds的性能比旨在检测高斯图形模型线性关系的现有最佳方法有显著提升。我们应用mofreds分析了来自癌症基因组图谱(TCGA)的乳腺癌患者的基因表达数据。我们发现它发现了高斯图形模型方法遗漏的基因对之间的非线性关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5aa/8341558/6322a3b535e5/nihms-1724164-f0001.jpg

相似文献

7
Graph Estimation with Joint Additive Models.基于联合加法模型的图估计
Biometrika. 2014 Mar 1;101(1):85-101. doi: 10.1093/biomet/ast053.

本文引用的文献

1
Sparse Sliced Inverse Regression Via Lasso.基于套索法的稀疏切片逆回归
J Am Stat Assoc. 2019;114(528):1726-1739. doi: 10.1080/01621459.2018.1520115. Epub 2019 Mar 9.
4
Multiple loci mapping via model-free variable selection.通过无模型变量选择进行多基因座定位
Biometrics. 2012 Mar;68(1):12-22. doi: 10.1111/j.1541-0420.2011.01650.x. Epub 2011 Aug 12.
6
Geometric interpretation of gene coexpression network analysis.基因共表达网络分析的几何解释
PLoS Comput Biol. 2008 Aug 15;4(8):e1000117. doi: 10.1371/journal.pcbi.1000117.
8
Genome-wide coexpression dynamics: theory and application.全基因组共表达动力学:理论与应用
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16875-80. doi: 10.1073/pnas.252466999. Epub 2002 Dec 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验