Suppr超能文献

使用正则化得分匹配估计高维图形模型

Estimation of High-Dimensional Graphical Models Using Regularized Score Matching.

作者信息

Lin Lina, Drton Mathias, Shojaie Ali

机构信息

Department of Statistics, University of Washington, Seattle, WA 98195, U.S.A.

Department of Biostatistics, University of Washington, Seattle, WA 98195, U.S.A.

出版信息

Electron J Stat. 2016;10(1):806-854. doi: 10.1214/16-EJS1126. Epub 2016 Apr 6.

Abstract

Graphical models are widely used to model stochastic dependences among large collections of variables. We introduce a new method of estimating undirected conditional independence graphs based on the score matching loss, introduced by Hyvärinen (2005), and subsequently extended in Hyvärinen (2007). The method we propose applies to settings with continuous observations and allows for computationally efficient treatment of possibly non-Gaussian exponential family models. In the well-explored Gaussian setting, regularized score matching avoids issues of asymmetry that arise when applying the technique of neighborhood selection, and compared to existing methods that directly yield symmetric estimates, the score matching approach has the advantage that the considered loss is quadratic and gives piecewise linear solution paths under ℓ regularization. Under suitable irrepresentability conditions, we show that ℓ-regularized score matching is consistent for graph estimation in sparse high-dimensional settings. Through numerical experiments and an application to RNAseq data, we confirm that regularized score matching achieves state-of-the-art performance in the Gaussian case and provides a valuable tool for computationally efficient estimation in non-Gaussian graphical models.

摘要

图模型被广泛用于对大量变量集合之间的随机依赖性进行建模。我们引入了一种基于分数匹配损失来估计无向条件独立图的新方法,该损失由Hyvärinen(2005)提出,随后在Hyvärinen(2007)中得到扩展。我们提出的方法适用于具有连续观测值的情况,并允许对可能的非高斯指数族模型进行计算高效的处理。在研究充分的高斯设定中,正则化分数匹配避免了应用邻域选择技术时出现的不对称问题,并且与直接产生对称估计的现有方法相比,分数匹配方法的优势在于所考虑的损失是二次的,并且在ℓ正则化下给出分段线性解路径。在合适的不可表示性条件下,我们表明ℓ正则化分数匹配在稀疏高维设定中对于图估计是一致的。通过数值实验以及对RNAseq数据的应用,我们证实正则化分数匹配在高斯情况下实现了最优性能,并为非高斯图模型中的计算高效估计提供了一个有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fa9/5476334/1b3bc5980efb/nihms844115f1.jpg

相似文献

4
Graph Estimation with Joint Additive Models.基于联合加法模型的图估计
Biometrika. 2014 Mar 1;101(1):85-101. doi: 10.1093/biomet/ast053.
6
An Expectation Conditional Maximization approach for Gaussian graphical models.高斯图形模型的期望条件最大化方法。
J Comput Graph Stat. 2019;28(4):767-777. doi: 10.1080/10618600.2019.1609976. Epub 2019 Jun 19.
9
Sparse Quadratic Approximation for Graph Learning.用于图学习的稀疏二次逼近
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):11256-11269. doi: 10.1109/TPAMI.2023.3263969. Epub 2023 Aug 7.

引用本文的文献

2
Causal Structural Learning via Local Graphs.通过局部图进行因果结构学习
SIAM J Math Data Sci. 2023;5(2):280-305. doi: 10.1137/20m1362796.
3
Differential Network Analysis: A Statistical Perspective.差异网络分析:统计学视角
Wiley Interdiscip Rev Comput Stat. 2021 Mar-Apr;13(2). doi: 10.1002/wics.1508. Epub 2020 Apr 6.
5
TORUS GRAPHS FOR MULTIVARIATE PHASE COUPLING ANALYSIS.用于多变量相位耦合分析的环面图
Ann Appl Stat. 2020 Jun;14(2):635-660. doi: 10.1214/19-aoas1300. Epub 2020 Jun 29.
6
Generalized score matching for general domains.通用领域的广义得分匹配。
Inf inference. 2021 Jan 25;11(2):739-780. doi: 10.1093/imaiai/iaaa041. eCollection 2022 Jun.
8
Fast Bayesian inference in large Gaussian graphical models.大型高斯图模型中的快速贝叶斯推理。
Biometrics. 2019 Dec;75(4):1288-1298. doi: 10.1111/biom.13064. Epub 2019 May 6.

本文引用的文献

4
Graph Estimation with Joint Additive Models.基于联合加法模型的图估计
Biometrika. 2014 Mar 1;101(1):85-101. doi: 10.1093/biomet/ast053.
5
A Local Poisson Graphical Model for inferring networks from sequencing data.基于测序数据推断网络的局部泊松图模型。
IEEE Trans Nanobioscience. 2013 Sep;12(3):189-98. doi: 10.1109/TNB.2013.2263838. Epub 2013 Aug 15.
7
Robust Gaussian graphical modeling via l1 penalization.通过 l1 惩罚实现稳健的高斯图形模型。
Biometrics. 2012 Dec;68(4):1197-206. doi: 10.1111/j.1541-0420.2012.01785.x. Epub 2012 Sep 28.
8
Skp2: a novel potential therapeutic target for prostate cancer.Skp2:一种新型的前列腺癌潜在治疗靶点。
Biochim Biophys Acta. 2012 Jan;1825(1):11-7. doi: 10.1016/j.bbcan.2011.09.002. Epub 2011 Sep 22.
10
A connection between score matching and denoising autoencoders.得分匹配与去噪自动编码器之间的联系。
Neural Comput. 2011 Jul;23(7):1661-74. doi: 10.1162/NECO_a_00142. Epub 2011 Apr 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验