Suppr超能文献

通过分子剪裁方法评估氨簇合物中单个氢键的强度和协同性。

Appraisal of individual hydrogen bond strengths and cooperativity in ammonia clusters via a molecular tailoring approach.

作者信息

Ahirwar Mini Bharati, Patkar Deepak, Yadav Itee, Deshmukh Milind M

机构信息

Department of Chemistry, Dr Harisingh Gour Vishwavidyalaya, (A Central University), Sagar, 470003, India.

出版信息

Phys Chem Chem Phys. 2021 Aug 28;23(32):17224-17231. doi: 10.1039/d1cp02839a. Epub 2021 Aug 9.

Abstract

In this work, we propose and test a method, based on the molecular tailoring approach (MTA), for the evaluation of individual hydrogen bond (HB) energies in ammonia (NH) clusters. This methodology was tested, in our earlier work, on water clusters. Liquid ammonia being a universal, non-aqueous ionizing solvent, such information of individual HB strength is indispensable in many studies. The estimated HB energies by an MTA-based method, in (NH) for n = 3-8, were calculated to be in the range of 0.65 to 5.54 kcal mol with the cooperativity contribution falling between -0.54 and 1.88 kcal mol both calculated at the MP2(full)/aug-cc-pVTZ level of theory. It is seen that the strong HBs in (NH) clusters were additionally strengthened by the large contribution of HB cooperativity. The accuracy of these estimated HB energies was validated by approximately estimating the molecular energy of a given cluster by adding the sum of HB energies to the sum of monomer energies. This approximately estimated molecular energy of a given cluster was found to be in excellent agreement with the actual calculated values. The negligibly small difference (less than 5.6 kcal mol) in these two values suggests that the estimated individual HB energies in ammonia clusters are quite reliable. Furthermore, these estimated HB energies by MTA are in excellent qualitative agreement with the other indirect measures of HB strength, such as HB bond distances and angles, N-H stretching frequency and the electron density values at the (3,-1) bond critical points.

摘要

在这项工作中,我们提出并测试了一种基于分子剪裁方法(MTA)的方法,用于评估氨(NH)团簇中单个氢键(HB)的能量。在我们早期的工作中,该方法已在水团簇上进行了测试。液氨作为一种通用的非水离子化溶剂,这种单个HB强度的信息在许多研究中是不可或缺的。基于MTA的方法估算的(NH)中n = 3 - 8时的HB能量,在MP2(全)/aug-cc-pVTZ理论水平下计算得出,范围为0.65至5.54 kcal/mol,协同作用贡献在-0.54至1.88 kcal/mol之间。可以看出,(NH)团簇中的强HBs因HB协同作用的巨大贡献而进一步增强。通过将HB能量总和与单体能量总和相加来近似估算给定团簇的分子能量,从而验证了这些估算的HB能量的准确性。发现给定团簇的这种近似估算的分子能量与实际计算值非常吻合。这两个值之间极小的差异(小于5.6 kcal/mol)表明,氨团簇中估算的单个HB能量相当可靠。此外,通过MTA估算的这些HB能量与其他HB强度的间接测量方法,如HB键距离和角度、N - H伸缩频率以及(3,-1)键临界点处的电子密度值,在定性上非常吻合。

相似文献

1
Appraisal of individual hydrogen bond strengths and cooperativity in ammonia clusters via a molecular tailoring approach.
Phys Chem Chem Phys. 2021 Aug 28;23(32):17224-17231. doi: 10.1039/d1cp02839a. Epub 2021 Aug 9.
2
Unusually Large Hydrogen-Bond Cooperativity in Hydrogen Fluoride Clusters, (HF), = 3 to 8, Revealed by the Molecular Tailoring Approach.
J Phys Chem A. 2021 Oct 14;125(40):8836-8845. doi: 10.1021/acs.jpca.1c06478. Epub 2021 Oct 6.
3
Hydration shell model for expeditious and reliable individual hydrogen bond energies in large water clusters.
Phys Chem Chem Phys. 2022 Jun 29;24(25):15462-15473. doi: 10.1039/d2cp01663j.
4
Direct and Reliable Method for Estimating the Hydrogen Bond Energies and Cooperativity in Water Clusters, W, = 3 to 8.
J Phys Chem A. 2020 Aug 20;124(33):6699-6706. doi: 10.1021/acs.jpca.0c05631. Epub 2020 Aug 10.
6
Molecular Tailoring Approach for Estimating Individual Intermolecular Interaction Energies in Benzene Clusters.
J Phys Chem A. 2021 Jul 22;125(28):6131-6140. doi: 10.1021/acs.jpca.1c03907. Epub 2021 Jul 12.
7
Energetic Ordering of Hydrogen Bond Strengths in Methanol-Water Clusters: Insights via Molecular Tailoring Approach.
Chemphyschem. 2022 May 18;23(10):e202200143. doi: 10.1002/cphc.202200143. Epub 2022 Apr 5.
8
Two-Step ONIOM Method for the Accurate Estimation of Individual Hydrogen Bond Energy in Large Molecular Clusters.
J Phys Chem A. 2023 Feb 9;127(5):1219-1232. doi: 10.1021/acs.jpca.2c08087. Epub 2023 Jan 27.
10
On the Short-Range Nature of Cooperativity in Hydrogen-Bonded Large Molecular Clusters.
J Phys Chem A. 2023 May 25;127(20):4394-4406. doi: 10.1021/acs.jpca.3c00359. Epub 2023 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验