Patkar Deepak, Ahirwar Mini Bharati, Deshmukh Milind M
Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, A Central University), Sagar, 470003, India.
Chemphyschem. 2022 May 18;23(10):e202200143. doi: 10.1002/cphc.202200143. Epub 2022 Apr 5.
In this work, we examine the strength of various types of individual hydrogen bond (HB) in mixed methanol-water M W , (n+m=2 to 7) clusters, with an aim to understand the relative order of their strength, using our recently proposed molecular tailoring-based approach (MTA). Among all the types of HB, it is observed that the O -H…O HBs are the strongest (6.9 to 12.4 kcal mol ). The next ones are O -H…O HBs (6.5 to 11.6 kcal mol ). The O -H…O (0.2 to 10.9 kcal mol ) and O -H…O HBs (0.3 to 10.3 kcal mol ) are the weakest ones. This energetic ordering of HBs is seen to be different from the respective HB energies in the dimer i. e., O -H…O (5.0 to 6.0 kcal mol )>O -H…O (1.5 to 6.0 kcal mol )>O -H…O (3.8 to 5.6 kcal mol )>O -H…O (1.2 to 5.0 kcal mol ). The plausible reason for the difference in the HB energy ordering may be attributed to the increase or decrease in HB strengths due to the formation of cooperative or anti-cooperative HB networks. For instance, the cooperativity contribution towards the different types of HB follows: O -H…O (2.4 to 8.6 kcal mol )>O -H…O (1.3 to 6.3 kcal mol )>O -H…O (-1.0 to 6.5 kcal mol )>O -H…O (-1.2 to 5.3 kcal mol ). This ordering of cooperativity contribution is similar to the HB energy ordering obtained by the MTA-based method. It is emphasized here that, the interplay between the cooperative and anti-cooperative contributions are indispensable for the correct energetic ordering of these HBs.
在这项工作中,我们使用我们最近提出的基于分子剪裁的方法(MTA),研究了混合甲醇 - 水MW(n + m = 2至7)团簇中各种类型的单个氢键(HB)的强度,旨在了解它们强度的相对顺序。在所有类型的HB中,可以观察到O - H…O氢键是最强的(6.9至12.4千卡·摩尔)。其次是O - H…O氢键(6.5至11.6千卡·摩尔)。O - H…O(0.2至10.9千卡·摩尔)和O - H…O氢键(0.3至10.3千卡·摩尔)是最弱的。这种氢键的能量排序被认为与二聚体中各自的氢键能量不同,即O - H…O(5.0至6.0千卡·摩尔)> O - H…O(1.5至6.0千卡·摩尔)> O - H…O(3.8至5.6千卡·摩尔)> O - H…O(1.2至5.0千卡·摩尔)。氢键能量排序差异的合理原因可能归因于由于形成协同或反协同氢键网络而导致的氢键强度的增加或降低。例如,对不同类型氢键的协同作用贡献如下:O - H…O(2.4至8.6千卡·摩尔)> O - H…O(1.3至6.3千卡·摩尔)> O - H…O(-1.0至6.5千卡·摩尔)> O - H…O(-1.2至5.3千卡·摩尔)。这种协同作用贡献的排序与基于MTA方法获得的氢键能量排序相似。在此强调,协同和反协同贡献之间的相互作用对于这些氢键的正确能量排序是必不可少的。