Ahirwar Mini Bharati, Deshmukh Milind M
Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar470003, India.
J Phys Chem A. 2023 Feb 9;127(5):1219-1232. doi: 10.1021/acs.jpca.2c08087. Epub 2023 Jan 27.
The study of molecular clusters to understand the properties of condensed systems has been the subject of immense interest. To get insight into these properties, the knowledge of various noncovalent interactions present in these molecular clusters is indispensable. Our recently developed molecular tailoring approach-based (MTA-based) method for the estimation of the individual hydrogen bond (HB) energy in molecular clusters is useful for this purpose. However, the direct application of this MTA-based method becomes progressively difficult with the increase in the size of the cluster. This is because of the difficulty in the evaluation of single-point energy at the correlated level of theory. To overcome this caveat, herein, we propose a two-step method within the our own N-layer integrated molecular orbital molecular mechanics (ONIOM) framework. In this method, the HB energy evaluated by the MTA-based method employing the actual molecular cluster at a low Hartree-Fock (HF) level of theory is added to the difference in the HB energies evaluated by the MTA-based method, employing an appropriate small model system, called the shell-1 model, calculated at high (MP2) and low (HF) levels of theory. The shell-1 model of a large molecular cluster is made up of only a few molecules that are in direct contact (by a single HB) with the two molecules involved in the formation of an HB under consideration. We tested this proposed two-step ONIOM method to estimate the individual HB energies in various molecular clusters, viz., water (W, = 10-16, 18 and 20), (HO), (HO), (NH) and strongly interacting (HF) and (HF)(W) clusters. Furthermore, these estimated individual HB energies by the ONIOM method are compared with those calculated by the MTA-based method using actual molecular clusters. The estimated individual HB energies by the ONIOM method, in all these clusters, are in excellent linear one-to-one agreement ( = 0.9996) with those calculated by the MTA-based method using actual molecular clusters. Furthermore, the small values of root-mean-square deviation (0.06), mean absolute error (0.04), |Δ| (0.21) and Sε (0.06) suggest that this two-step ONIOM method is a pragmatic approach to provide accurate estimates of individual HB energies in large molecular clusters.
研究分子簇以了解凝聚态体系的性质一直是人们极大关注的课题。为深入了解这些性质,知晓这些分子簇中存在的各种非共价相互作用是必不可少的。我们最近开发的基于分子剪裁方法(MTA)来估算分子簇中单个氢键(HB)能量的方法,对此目的很有用。然而,随着簇尺寸的增加,这种基于MTA的方法的直接应用变得越来越困难。这是因为在相关理论水平上评估单点能量存在困难。为克服这一问题,在此,我们在我们自己的N层集成分子轨道分子力学(ONIOM)框架内提出一种两步法。在该方法中,将基于MTA的方法在低Hartree-Fock(HF)理论水平下使用实际分子簇评估得到的HB能量,与基于MTA的方法使用一个合适的小模型体系(称为壳层-1模型)在高(MP2)和低(HF)理论水平下评估得到的HB能量之差相加。一个大分子簇的壳层-1模型仅由少数几个与所考虑的形成一个HB的两个分子直接接触(通过单个HB)的分子组成。我们测试了这种提出的两步ONIOM方法来估算各种分子簇中的单个HB能量,即水(W,= 10 - 16、18和20)、(HO)、(HO)、(NH)以及强相互作用的(HF)和(HF)(W)簇。此外,将通过ONIOM方法估算的这些单个HB能量与使用实际分子簇通过基于MTA的方法计算得到的能量进行比较。在所有这些簇中,通过ONIOM方法估算的单个HB能量与使用实际分子簇通过基于MTA的方法计算得到的能量呈现出极好的线性一一对应关系(= 0.9996)。此外,均方根偏差(0.06)、平均绝对误差(0.04)、|Δ|(0.21)和Sε(0.06)的小值表明,这种两步ONIOM方法是一种实用的方法,可用于准确估算大分子簇中单个HB的能量。