Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota, USA.
Redlen Technologies, Saanichton, British Columbia, Canada.
Med Phys. 2021 Oct;48(10):5819-5829. doi: 10.1002/mp.15154. Epub 2021 Aug 25.
Charge sharing is a major non-ideality in photon counting detectors (PCDs) and can increase variance in material decomposition images. Analog charge summing (ACS) is an effective mechanism for charge sharing compensation (CSC), but is complex to implement and may limit the maximum count rate of the PCD. Digital CSC mechanisms such as digital count summing (DCS) may be simpler to implement; however, earlier simulation studies suggest that digital CSC only provides half the benefit of ACS. We propose including an additional low-threshold comparator (LTC) underneath the noise floor of the PCD to improve the effectiveness of digital CSC.
We simulated a PCD with four or eight equally spaced energy bins. X-ray photons arrived on the PCD following a Poisson distribution, and charge was allocated to PCD pixels following Monte Carlo techniques. Gaussian electronic noise was added with standard deviation of 2 keV and the signals were processed with four CSC schemes: no CSC, ACS, DCS, and DCS with LTC. The energy bins were placed from 25 to 100 keV at 25 keV intervals (for four bins) or from 25 to 112.5 keV at 12.5 keV intervals (for eight bins), and the LTC threshold was placed at 8 keV in both cases. The binned counts were transformed into estimates of water and iodine material thickness using a linear estimator that was fitted to the data. Our simulations were performed in the low-flux limit without any pileup, assuming a 120 kVp spectrum, 25 cm water object, and 0.3 mm PCD pixel size.
All CSC schemes decreased variance in basis material decomposition. In the four-bin PCD, the relative dose efficiencies (inverse of the variance) for iodine material decomposition were 1.0, 2.4, 3.2, and 4.3 for a PCD without CSC, DCS without LTC, DCS with LTC, and ACS, respectively. In the eight-bin PCD, the relative dose efficiencies were 1.1, 2.5, 3.1, and 4.8, respectively. In a sensitivity analysis, electronic noise had a stronger deleterious effect on ACS than DCS. In simulated visual images, DCS and ACS improved high frequency contrast in material decomposition images.
Introducing an LTC may reduce the performance differential between DCS and ACS. These findings have been derived from simulation studies only and have not been validated experimentally.
电荷共享是光子计数探测器(PCD)中的一个主要非理想因素,会增加物质分解图像的方差。模拟电荷求和(ACS)是一种有效的电荷共享补偿(CSC)机制,但实现起来很复杂,并且可能会限制 PCD 的最大计数率。数字 CSC 机制,如数字计数求和(DCS),可能更容易实现;然而,早期的模拟研究表明,数字 CSC 仅提供 ACS 益处的一半。我们提出在 PCD 的噪声底下方添加一个额外的低阈值比较器(LTC),以提高数字 CSC 的有效性。
我们模拟了一个具有四个或八个等间距能量-bin 的 PCD。X 射线光子按照泊松分布到达 PCD,并且电荷按照蒙特卡罗技术分配给 PCD 像素。添加标准偏差为 2keV 的高斯电子噪声,并使用四个 CSC 方案对信号进行处理:无 CSC、ACS、DCS 和带有 LTC 的 DCS。能量-bin 以 25keV 的间隔从 25keV 到 100keV(对于四个-bin)或从 25keV 到 112.5keV(对于八个-bin)放置,并且在这两种情况下,LTC 阈值都设置为 8keV。将分-bin 计数转换为使用线性估计器对数据进行拟合的水和碘材料厚度的估计。我们的模拟在没有任何堆积的低通量限制下进行,假设 120kVp 谱、25cm 水物体和 0.3mm PCD 像素大小。
所有 CSC 方案都降低了基础物质分解的方差。在四-bin PCD 中,对于没有 CSC、没有 LTC 的 DCS、带有 LTC 的 DCS 和 ACS 的碘材料分解,碘材料分解的相对剂量效率(方差的倒数)分别为 1.0、2.4、3.2 和 4.3。在八-bin PCD 中,相对剂量效率分别为 1.1、2.5、3.1 和 4.8。在敏感性分析中,电子噪声对 ACS 的有害影响比对 DCS 的更大。在模拟的视觉图像中,DCS 和 ACS 改善了物质分解图像中的高频对比度。
引入 LTC 可能会缩小 DCS 和 ACS 之间的性能差异。这些发现仅来自于模拟研究,尚未经过实验验证。