IEEE Trans Med Imaging. 2020 Mar;39(3):678-687. doi: 10.1109/TMI.2019.2933986. Epub 2019 Aug 8.
The performance of X-ray photon counting detectors (PCDs), especially on spectral tasks, is compromised by charge sharing. Existing mechanisms to compensate for charge sharing, such as charge summing circuitry or larger pixel sizes, increase and aggravate pileup effects. We propose a new mechanism, the coincidence counting bin (CCB), which does not increase pileup and which has implementation similarities to existing energy bins. The CCB is triggered by coincident events in adjacent pixels and provides an estimate of the double counts arising from charge sharing. Unlike charge summing, the CCB does not directly restore corrupted events. Nonetheless, knowledge of the number of coincident counts can be used by the estimator to reduce noise. We simulated a PCD with and without the CCB using Monte Carlo simulations, modeling PCD pixels as instantaneous charge collectors and X-ray energy deposition as producing a Gaussian charge cloud with 75 micron FWHM, independent of energy. With typical operating conditions and at low flux (120 kVp, incident count rate 1% of characteristic count rate, 30 cm object thickness, five energy bins, pixel pitch of 300 microns), the CCB improved dose efficiency of iodine and water basis material decomposition by 70% and 50%, respectively. An improvement of 20% was also seen in an iodine CNR task. These improvements are attenuated as incident flux increases and show moderate dependence on filtration and pixel size. At high flux, the CCB does not provide useful information and is discarded by the estimator. The CCB may be an effective and practical mechanism for charge sharing compensation in PCDs.
X 射线光子计数探测器(PCD)的性能,尤其是在光谱任务方面,受到电荷共享的影响。现有的补偿电荷共享的机制,如电荷求和电路或更大的像素尺寸,会增加和加剧堆积效应。我们提出了一种新的机制,即符合计数箱(CCB),它不会增加堆积效应,并且与现有能量箱具有相似的实现方式。CCB 由相邻像素中的符合事件触发,并提供由于电荷共享而产生的双计数的估计值。与电荷求和不同,CCB 不会直接恢复损坏的事件。尽管如此,估计器可以利用符合计数的数量来减少噪声。我们使用蒙特卡罗模拟对带有和不带有 CCB 的 PCD 进行了模拟,将 PCD 像素建模为瞬时电荷收集器,X 射线能量沉积为具有 75 微米 FWHM 的高斯电荷云,与能量无关。在典型的工作条件下,低通量(120 kVp,入射计数率为特征计数率的 1%,30 厘米物体厚度,五个能量箱,像素间距为 300 微米)下,CCB 分别将碘和水基材料分解的剂量效率提高了 70%和 50%。碘的 CNR 任务也有 20%的提高。随着入射通量的增加,这些改进会减弱,并且对过滤和像素尺寸有适度的依赖。在高通量下,CCB 不会提供有用的信息,并且会被估计器丢弃。CCB 可能是 PCD 中补偿电荷共享的有效且实用的机制。