Suppr超能文献

基于线扫描荧光高光谱成像显微镜和多变量曲线分辨的色素分析。

Pigment analysis based on a line-scanning fluorescence hyperspectral imaging microscope combined with multivariate curve resolution.

机构信息

Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Provincial Higher Education Institute, Shenzhen Technology University, Shenzhen, Guangdong, China.

Guangdong Provincial Key Laboratory of Micro/Nano Opticmechatronicas Engineering, Shenzhen University, Shenzhen, Guangdong, China.

出版信息

PLoS One. 2021 Aug 9;16(8):e0254864. doi: 10.1371/journal.pone.0254864. eCollection 2021.

Abstract

A rapid and cost-effective system is vital for the detection of harmful algae that causes environmental problems in terms of water quality. The approach for algae detection was to capture images based on hyperspectral fluorescence imaging microscope by detecting specific fluorescence signatures. With the high degree of overlapping spectra of algae, the distribution of pigment in the region of interest was unknown according to a previous report. We propose an optimization method of multivariate curve resolution (MCR) to improve the performance of pigment analysis. The reconstruction image described location and concentration of the microalgae pigments. This result indicated the cyanobacterial pigment distribution and mapped the relative pigment content. In conclusion, with the advantage of acquiring two-dimensional images across a range of spectra, HSI conjoining spectral features with spatial information efficiently estimated specific features of harmful microalgae in MCR models.

摘要

对于检测导致水质环境问题的有害藻类来说,快速且具有成本效益的系统至关重要。藻类检测的方法是通过检测特定的荧光特征,基于高光谱荧光成像显微镜来捕获图像。根据之前的一份报告,由于藻类的光谱高度重叠,目标区域内色素的分布是未知的。我们提出了一种多变量曲线分辨(MCR)的优化方法,以提高色素分析的性能。重建图像描述了微藻色素的位置和浓度。该结果表明蓝细菌色素的分布,并绘制了相对色素含量。总之,HSI 结合了光谱特征和空间信息,在 MCR 模型中有效地估计了有害微藻的特定特征,具有获取跨光谱范围二维图像的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验