State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
Int J Nanomedicine. 2022 Apr 29;17:1865-1879. doi: 10.2147/IJN.S362720. eCollection 2022.
Titanium implants have been widely applied in dentistry and orthopedics due to their biocompatibility and resistance to mechanical fatigue. TiO nanotube arrays (TiO NTAs) on titanium implant surfaces have exhibited excellent biocompatibility, bioactivity, and adjustability, which can significantly promote osseointegration and participate in its entire path. In this review, to give a comprehensive understanding of the osseointegration process, four stages have been divided according to pivotal biological processes, including protein adsorption, inflammatory cell adhesion/inflammatory response, additional relevant cell adhesion and angiogenesis/osteogenesis. The impact of TiO NTAs on osseointegration is clarified in detail from the four stages. The nanotubular layer can manipulate the quantity, the species and the conformation of adsorbed protein. For inflammatory cells adhesion and inflammatory response, TiO NTAs improve macrophage adhesion on the surface and induce M2-polarization. TiO NTAs also facilitate the repairment-related cells adhesion and filopodia formation for additional relevant cells adhesion. In the angiogenesis and osteogenesis stage, TiO NTAs show the ability to induce osteogenic differentiation and the potential for blood vessel formation. In the end, we propose the multi-dimensional regulation of TiO NTAs on titanium implants to achieve highly efficient manipulation of osseointegration, which may provide views on the rational design and development of titanium implants.
钛植入物由于其生物相容性和抗机械疲劳性而在牙科和骨科中得到了广泛应用。钛植入物表面的 TiO 纳米管阵列 (TiO NTA) 表现出优异的生物相容性、生物活性和可调节性,可显著促进骨整合并参与其整个过程。在本综述中,为了全面了解骨整合过程,根据关键的生物学过程将其分为四个阶段,包括蛋白质吸附、炎性细胞黏附/炎症反应、其他相关细胞黏附和血管生成/成骨。从这四个阶段详细阐明了 TiO NTA 对骨整合的影响。纳米管层可以操纵吸附蛋白质的数量、种类和构象。对于炎性细胞黏附和炎症反应,TiO NTA 改善了表面上巨噬细胞的黏附并诱导 M2 极化。TiO NTA 还促进了修复相关细胞的黏附和丝状伪足形成,从而促进了其他相关细胞的黏附。在血管生成和成骨阶段,TiO NTA 显示出诱导成骨分化的能力和形成血管的潜力。最后,我们提出了 TiO NTA 对钛植入物的多维调控,以实现对骨整合的高效调控,这可能为钛植入物的合理设计和开发提供了新的思路。