Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia.
Chemosphere. 2022 Jan;286(Pt 2):131765. doi: 10.1016/j.chemosphere.2021.131765. Epub 2021 Aug 2.
Photocatalytic conversion of carbon dioxide (CO) into gaseous hydrocarbon fuels is an auspicious way to produce renewable fuels in addition to greenhouse gas emission mitigation. In this work, non-metals (B, O, P, and S) doped graphitic carbon nitride (g-CN) was prepared via solid-state polycondensation of urea for photocatalytic CO reduction into highly needed methane (CH) with water under UV light irradiation. The various physicochemical characterization results reveal the successful incorporation of B, O, P, and S elements in the g-CN matrix. The maximum CH yield of 55.10 nmol/(mL.g) over S-doped g-CN has been obtained for CO reduction after 7 h of irradiation. This amount of CH production was 1.9, 1.4, 1.7, and 2.4-folds higher than B, O, P and bare g-CN samples. The doping of S did not enlarge the surface area and photon absorption ability of the g-CN sample, but this significant improvement was evidently due to effective charge separation and migration. The observed results imply that the doping of non-metal elements provides improved charge separation and is an effective way to boost photocatalyst performance. This work offers an auspicious approach to design non-metal doped g-CN photocatalysts for renewable fuel production and would be promising for other energy application.
光催化将二氧化碳(CO)转化为气态烃类燃料是一种很有前途的方法,除了可以减少温室气体排放外,还可以生产可再生燃料。在这项工作中,通过固态缩聚尿素制备了非金属(B、O、P 和 S)掺杂石墨相氮化碳(g-CN),用于在紫外光照射下将 CO 光催化还原为高需求的甲烷(CH)与水。各种物理化学特性的结果表明,B、O、P 和 S 元素成功地掺入了 g-CN 基体中。在 7 小时的辐照后,S 掺杂 g-CN 对 CO 还原的最大 CH 产率为 55.10 nmol/(mL.g)。与 B、O、P 和裸 g-CN 样品相比,这种 CH 的产生量分别提高了 1.9、1.4、1.7 和 2.4 倍。S 的掺杂并没有增大 g-CN 样品的表面积和光子吸收能力,但这种明显的改进显然是由于有效电荷分离和迁移。观察到的结果表明,非金属元素的掺杂提供了改进的电荷分离,是提高光催化剂性能的有效方法。这项工作为设计用于可再生燃料生产的非金属掺杂 g-CN 光催化剂提供了一个很有前途的方法,对于其他能源应用也将具有很大的潜力。