Suppr超能文献

生物传感器应用中共焦拉曼光谱仪的噪声源和要求。

Noise Sources and Requirements for Confocal Raman Spectrometers in Biosensor Applications.

机构信息

Leibniz Institute of Photonic Technology (Leibniz-IPHT), a Member of the Leibniz Research Alliance Leibniz Health Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.

InfectoGnostics Research Campus Jena, Centre for Applied Research, Philosophenweg 7, 07743 Jena, Germany.

出版信息

Sensors (Basel). 2021 Jul 27;21(15):5067. doi: 10.3390/s21155067.

Abstract

Raman spectroscopy probes the biochemical composition of samples in a non-destructive, non-invasive and label-free fashion yielding specific information on a molecular level. Nevertheless, the Raman effect is very weak. The detection of all inelastically scattered photons with highest efficiency is therefore crucial as well as the identification of all noise sources present in the system. Here we provide a study for performance comparison and assessment of different spectrometers for confocal Raman spectroscopy in biosensor applications. A low-cost, home-built Raman spectrometer with a complementary metal-oxide-semiconductor (CMOS) camera, a middle price-class mini charge-coupled device (CCD) Raman spectrometer and a laboratory grade confocal Raman system with a deeply cooled CCD detector are compared. It is often overlooked that the sample itself is the most important "optical" component in a Raman spectrometer and its properties contribute most significantly to the signal-to-noise ratio. For this purpose, different representative samples: a crystalline silicon wafer, a polypropylene sample and bacteria were measured under similar conditions using the three confocal Raman spectrometers. We show that biosensor applications do not in every case profit from the most expensive equipment. Finally, a small Raman database of three different bacteria species is set up with the middle price-class mini CCD Raman spectrometer in order to demonstrate the potential of a compact setup for pathogen discrimination.

摘要

拉曼光谱以非破坏性、非侵入性和无标记的方式探测样品的生化组成,提供分子水平的特定信息。然而,拉曼效应非常微弱。因此,高效地检测所有非弹性散射光子以及识别系统中存在的所有噪声源至关重要。在这里,我们提供了一项研究,用于比较和评估生物传感器应用中不同共焦拉曼光谱仪的性能。我们比较了一种低成本、基于互补金属氧化物半导体(CMOS)相机的自制拉曼光谱仪、一种中等价位的小型电荷耦合器件(CCD)拉曼光谱仪和一种具有深制冷 CCD 探测器的实验室级共焦拉曼系统。人们常常忽略的是,样品本身是拉曼光谱仪中最重要的“光学”元件,其特性对信噪比的贡献最大。为此,我们使用这三种共焦拉曼光谱仪在相似条件下测量了不同的代表性样品:一个晶体硅片、一个聚丙烯样品和一些细菌。我们表明,生物传感器应用并不总是从最昂贵的设备中受益。最后,我们使用中等价位的小型 CCD 拉曼光谱仪建立了一个包含三种不同细菌的小型拉曼数据库,以展示紧凑设置用于病原体鉴别分析的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6776/8348363/01625fbe6d12/sensors-21-05067-sch001.jpg

相似文献

1
Noise Sources and Requirements for Confocal Raman Spectrometers in Biosensor Applications.
Sensors (Basel). 2021 Jul 27;21(15):5067. doi: 10.3390/s21155067.
2
Development of a cost-effective confocal Raman microscopy with high sensitivity.
Talanta. 2025 Jan 1;281:126754. doi: 10.1016/j.talanta.2024.126754. Epub 2024 Aug 30.
4
A comparison of imaging methods for use in an array biosensor.
Biosens Bioelectron. 2002 Sep;17(9):719-25. doi: 10.1016/s0956-5663(02)00060-x.
5
Single-Grating Monolithic Spatial Heterodyne Raman Spectrometer: An Investigation on the Effects of Detector Selection.
Appl Spectrosc. 2023 Dec;77(12):1411-1423. doi: 10.1177/00037028231204894. Epub 2023 Oct 6.
6
Grating Spectrometry and Spatial Heterodyne Fourier Transform Spectrometry: Comparative Noise Analysis for Raman Measurements.
Appl Spectrosc. 2021 Mar;75(3):241-249. doi: 10.1177/0003702820957311. Epub 2020 Oct 12.
7
Lightweight Raman spectroscope using time-correlated photon-counting detection.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12315-20. doi: 10.1073/pnas.1516249112. Epub 2015 Sep 21.
8
Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.
Appl Spectrosc. 2017 May;71(5):988-995. doi: 10.1177/0003702816665127. Epub 2016 Aug 29.
9
CCD based fiber-optic spectrometer detection.
Methods Mol Biol. 2009;503:435-45. doi: 10.1007/978-1-60327-567-5_25.

引用本文的文献

1
Transfer-Learning Deep Raman Models Using Semiempirical Quantum Chemistry.
J Chem Inf Model. 2025 Jul 14;65(13):6632-6643. doi: 10.1021/acs.jcim.5c00513. Epub 2025 Jun 18.
2
Biosensors, Artificial Intelligence Biosensors, False Results and Novel Future Perspectives.
Diagnostics (Basel). 2025 Apr 18;15(8):1037. doi: 10.3390/diagnostics15081037.
4
Performance assessment of probe-based Raman spectroscopy systems for biomedical analysis.
Biomed Opt Express. 2023 Jun 23;14(7):3597-3609. doi: 10.1364/BOE.494289. eCollection 2023 Jul 1.
5
Emergence of Raman Spectroscopy as a Probing Tool for Theranostics.
Nanotheranostics. 2023 Mar 5;7(3):216-235. doi: 10.7150/ntno.81936. eCollection 2023.
6
Testing Raman spectroscopy as a diagnostic approach for Lyme disease patients.
Front Cell Infect Microbiol. 2022 Oct 27;12:1006134. doi: 10.3389/fcimb.2022.1006134. eCollection 2022.
7
Multimodal Raman spectroscopy and optical coherence tomography for biomedical analysis.
J Biophotonics. 2023 Mar;16(3):e202200231. doi: 10.1002/jbio.202200231. Epub 2022 Nov 20.
8
Label-Free Sensing with Metal Nanostructure-Based Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis.
ACS Appl Nano Mater. 2022 Sep 23;5(9):12276-12299. doi: 10.1021/acsanm.2c02392. Epub 2022 Aug 22.

本文引用的文献

1
Discrimination between pathogenic and non-pathogenic E. coli strains by means of Raman microspectroscopy.
Anal Bioanal Chem. 2020 Dec;412(30):8241-8247. doi: 10.1007/s00216-020-02957-2. Epub 2020 Oct 8.
2
Low resolution Raman: the impact of spectral resolution on limit of detection and imaging speed in hyperspectral imaging.
Analyst. 2020 Oct 21;145(20):6607-6616. doi: 10.1039/d0an01390k. Epub 2020 Aug 13.
3
Rapid detection of bacterial infection and viability assessment with high specificity and sensitivity using Raman microspectroscopy.
Anal Bioanal Chem. 2020 Apr;412(11):2505-2516. doi: 10.1007/s00216-020-02474-2. Epub 2020 Feb 19.
4
Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning.
Nat Commun. 2019 Oct 30;10(1):4927. doi: 10.1038/s41467-019-12898-9.
7
Raman Imaging of Nanocarriers for Drug Delivery.
Nanomaterials (Basel). 2019 Mar 3;9(3):341. doi: 10.3390/nano9030341.
9
Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches.
Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4392-4430. doi: 10.1002/anie.201607604. Epub 2017 Mar 31.
10
[Not Available].
J Biophotonics. 2016 Oct;9(10):994-1000. doi: 10.1002/jbio.201600095. Epub 2016 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验