Suppr超能文献

面向天花板检查机器人的基于最优足迹的区域覆盖策略。

Towards an Optimal Footprint Based Area Coverage Strategy for a False-Ceiling Inspection Robot.

机构信息

Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore.

Oceania Robotics Private Limited, 3 Soon Lee Street, # 01-03 Pioneer Junction, Singapore 627606, Singapore.

出版信息

Sensors (Basel). 2021 Jul 30;21(15):5168. doi: 10.3390/s21155168.

Abstract

False-ceiling inspection is a critical factor in pest-control management within a built infrastructure. Conventionally, the false-ceiling inspection is done manually, which is time-consuming and unsafe. A lightweight robot is considered a good solution for automated false-ceiling inspection. However, due to the constraints imposed by less load carrying capacity and brittleness of false ceilings, the inspection robots cannot rely upon heavy batteries, sensors, and computation payloads for enhancing task performance. Hence, the strategy for inspection has to ensure efficiency and best performance. This work presents an optimal functional footprint approach for the robot to maximize the efficiency of an inspection task. With a conventional footprint approach in path planning, complete coverage inspection may become inefficient. In this work, the camera installation parameters are considered as the footprint defining parameters for the false ceiling inspection. An evolutionary algorithm-based multi-objective optimization framework is utilized to derive the optimal robot footprint by minimizing the area missed and path-length taken for the inspection task. The effectiveness of the proposed approach is analyzed using numerical simulations. The results are validated on an in-house developed false-ceiling inspection robot-Raptor-by experiment trials on a false-ceiling test-bed.

摘要

天花顶检查是建筑物内部虫害控制管理的一个关键因素。传统上,天花顶检查是手动进行的,既耗时又不安全。轻巧的机器人被认为是自动化天花顶检查的一个很好的解决方案。然而,由于天花顶的承载能力和脆性的限制,检查机器人不能依靠重电池、传感器和计算有效负载来提高任务性能。因此,检查策略必须确保效率和最佳性能。这项工作提出了一种机器人的最优功能足迹方法,以最大限度地提高检查任务的效率。在传统的足迹路径规划方法中,完全覆盖检查可能会变得效率低下。在这项工作中,相机安装参数被视为天花顶检查的定义足迹参数。利用基于进化算法的多目标优化框架,通过最小化检查任务的遗漏面积和路径长度,得出最优机器人足迹。使用数值模拟分析了所提出方法的有效性。通过在天花顶测试平台上对内部开发的天花顶检查机器人 Raptor 进行实验验证了该方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe75/8347183/bd13456b9323/sensors-21-05168-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验