Suppr超能文献

通过PbBiSe中嵌套导带的汇聚实现高热电性能且具有低导热率。

High thermoelectric performance enabled by convergence of nested conduction bands in PbBiSe with low thermal conductivity.

作者信息

Hu Lei, Fang Yue-Wen, Qin Feiyu, Cao Xun, Zhao Xiaoxu, Luo Yubo, Repaka Durga Venkata Maheswar, Luo Wenbo, Suwardi Ady, Soldi Thomas, Aydemir Umut, Huang Yizhong, Liu Zheng, Hippalgaonkar Kedar, Snyder G Jeffrey, Xu Jianwei, Yan Qingyu

机构信息

School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.

Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan.

出版信息

Nat Commun. 2021 Aug 9;12(1):4793. doi: 10.1038/s41467-021-25119-z.

Abstract

Thermoelectrics enable waste heat recovery, holding promises in relieving energy and environmental crisis. Lillianite materials have been long-term ignored due to low thermoelectric efficiency. Herein we report the discovery of superior thermoelectric performance in PbBiSe based lillianites, with a peak figure of merit, zT of 1.35 at 800 K and a high average zT of 0.92 (450-800 K). A unique quality factor is established to predict and evaluate thermoelectric performances. It considers both band nonparabolicity and band gaps, commonly negligible in conventional quality factors. Such appealing performance is attributed to the convergence of effectively nested conduction bands, providing a high number of valley degeneracy, and a low thermal conductivity, stemming from large lattice anharmonicity, low-frequency localized Einstein modes and the coexistence of high-density moiré fringes and nanoscale defects. This work rekindles the vision that PbBiSe based lillianites are promising candidates for highly efficient thermoelectric energy conversion.

摘要

热电材料能够实现废热回收,有望缓解能源和环境危机。由于热电效率低,硫铋铅矿材料长期被忽视。在此,我们报告了基于PbBiSe的硫铋铅矿具有优异的热电性能,其优值峰值在800 K时达到1.35,在450 - 800 K范围内平均优值高达0.92。我们建立了一个独特的品质因数来预测和评估热电性能。它同时考虑了能带非抛物性和带隙,而这在传统品质因数中通常被忽略。这种吸引人的性能归因于有效嵌套的导带的汇聚,提供了大量的谷简并度,以及低的热导率,这源于大的晶格非谐性、低频局域爱因斯坦模式以及高密度莫尔条纹和纳米级缺陷的共存。这项工作重新燃起了这样的愿景,即基于PbBiSe的硫铋铅矿是高效热电能量转换的有前途的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76d5/8352968/770f151dcb02/41467_2021_25119_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验