Hu Lei, Fang Yue-Wen, Qin Feiyu, Cao Xun, Zhao Xiaoxu, Luo Yubo, Repaka Durga Venkata Maheswar, Luo Wenbo, Suwardi Ady, Soldi Thomas, Aydemir Umut, Huang Yizhong, Liu Zheng, Hippalgaonkar Kedar, Snyder G Jeffrey, Xu Jianwei, Yan Qingyu
School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan.
Nat Commun. 2021 Aug 9;12(1):4793. doi: 10.1038/s41467-021-25119-z.
Thermoelectrics enable waste heat recovery, holding promises in relieving energy and environmental crisis. Lillianite materials have been long-term ignored due to low thermoelectric efficiency. Herein we report the discovery of superior thermoelectric performance in PbBiSe based lillianites, with a peak figure of merit, zT of 1.35 at 800 K and a high average zT of 0.92 (450-800 K). A unique quality factor is established to predict and evaluate thermoelectric performances. It considers both band nonparabolicity and band gaps, commonly negligible in conventional quality factors. Such appealing performance is attributed to the convergence of effectively nested conduction bands, providing a high number of valley degeneracy, and a low thermal conductivity, stemming from large lattice anharmonicity, low-frequency localized Einstein modes and the coexistence of high-density moiré fringes and nanoscale defects. This work rekindles the vision that PbBiSe based lillianites are promising candidates for highly efficient thermoelectric energy conversion.
热电材料能够实现废热回收,有望缓解能源和环境危机。由于热电效率低,硫铋铅矿材料长期被忽视。在此,我们报告了基于PbBiSe的硫铋铅矿具有优异的热电性能,其优值峰值在800 K时达到1.35,在450 - 800 K范围内平均优值高达0.92。我们建立了一个独特的品质因数来预测和评估热电性能。它同时考虑了能带非抛物性和带隙,而这在传统品质因数中通常被忽略。这种吸引人的性能归因于有效嵌套的导带的汇聚,提供了大量的谷简并度,以及低的热导率,这源于大的晶格非谐性、低频局域爱因斯坦模式以及高密度莫尔条纹和纳米级缺陷的共存。这项工作重新燃起了这样的愿景,即基于PbBiSe的硫铋铅矿是高效热电能量转换的有前途的候选材料。