Suppr超能文献

塔尔纳赫矿铜铁硫热电材料本征低热导率的起源:晶格动力学与热传输之间的关联

Origin of Intrinsically Low Thermal Conductivity in Talnakhite CuFeS Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport.

作者信息

Xie Hongyao, Su Xianli, Zhang Xiaomi, Hao Shiqiang, Bailey Trevor P, Stoumpos Constantinos C, Douvalis Alexios P, Hu Xiaobing, Wolverton Christopher, Dravid Vinayak P, Uher Ctirad, Tang Xinfeng, Kanatzidis Mercouri G

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , China.

Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States.

出版信息

J Am Chem Soc. 2019 Jul 10;141(27):10905-10914. doi: 10.1021/jacs.9b05072. Epub 2019 Jul 1.

Abstract

Understanding the nature of phonon transport in solids and the underlying mechanism linking lattice dynamics and thermal conductivity is important in many fields, including the development of efficient thermoelectric materials where a low lattice thermal conductivity is required. Herein, we choose the pair of synthetic chalcopyrite CuFeS and talnakhite CuFeS compounds, which possess the same elements and very similar crystal structures but very different phonon transport, as contrasting examples to study the influence of lattice dynamics and chemical bonding on the thermal transport properties. Chemically, talnakhite derives from chalcopyrite by inserting extra Cu and Fe atoms in the chalcopyrite lattice. The CuFeS compound has a lattice thermal conductivity of 2.37 W m K at 625 K, while CuFeS features Cu/Fe disorder and possesses an extremely low lattice thermal conductivity of merely 0.6 W m K at 625 K, approaching the amorphous limit κ. Low-temperature heat capacity measurements and phonon calculations point to a large anharmonicity and low Debye temperature in CuFeS, originating from weaker chemical bonds. Moreover, Mössbauer spectroscopy suggests that the state of Fe atoms in CuFeS is partially disordered, which induces the enhanced alloy scattering. All of the above peculiar features, absent in CuFeS, contribute to the extremely low lattice thermal conductivity of the CuFeS compound.

摘要

了解固体中声子输运的本质以及将晶格动力学与热导率联系起来的潜在机制在许多领域都很重要,包括开发需要低晶格热导率的高效热电材料。在此,我们选择合成黄铜矿CuFeS₂和塔尔纳赫矿CuFeS这一对化合物,它们具有相同的元素和非常相似的晶体结构,但声子输运却大不相同,作为对比实例来研究晶格动力学和化学键对热输运性质的影响。从化学角度来看,塔尔纳赫矿是通过在黄铜矿晶格中插入额外的铜和铁原子而由黄铜矿衍生而来。CuFeS₂化合物在625 K时的晶格热导率为2.37 W m⁻¹ K⁻¹,而CuFeS存在铜/铁无序现象,在625 K时具有极低的晶格热导率,仅为0.6 W m⁻¹ K⁻¹,接近非晶态极限κ。低温热容测量和声子计算表明,CuFeS中存在较大的非谐性和较低的德拜温度,这源于较弱的化学键。此外,穆斯堡尔谱表明CuFeS中铁原子的状态部分无序,这导致了合金散射增强。上述所有在CuFeS₂中不存在的独特特征,共同导致了CuFeS化合物极低的晶格热导率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验