1 Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
2 Department of Biology and Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts, USA.
J Biol Rhythms. 2017 Oct;32(5):380-393. doi: 10.1177/0748730417728663. Epub 2017 Nov 3.
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.
基因组生物学方法在我们对生物节律的理解上做出了巨大贡献,尤其是在识别时钟的输出方面,包括 RNA、蛋白质和代谢物,它们的丰度在一天中波动。这些方法具有很大的发现潜力,特别是与计算模型结合使用时。然而,基因组规模的实验昂贵且费力,产生了概念上和统计学上难以分析的“大数据”。在设计或分析方面没有明显的共识。在这里,我们讨论了产生可重复、统计学上合理且广泛有用的基因组规模数据的相关技术考虑因素。我们不是要提出一套严格的规则,而是要编纂原则,供主要文献的研究人员、审稿人和读者用来评估不同实验设计测量生物节律不同方面的适用性。我们引入了 CircaInSilico,这是一个基于网络的应用程序,用于生成合成基因组生物学数据,以基准测试用于研究生物节律的统计方法。最后,我们讨论了几个未满足的分析需求,包括应用于临床医学,并提出了有针对性的解决途径。