National Institute of Plant Genome Research, New Delhi, India.
Department of Genetics, University of Delhi South Campus, New Delhi, India.
Mol Plant Pathol. 2021 Oct;22(10):1180-1194. doi: 10.1111/mpp.13096. Epub 2021 Aug 10.
Heterotrimeric G-proteins are one of the highly conserved signal transducers across phyla. Despite the obvious importance of G-proteins in controlling various plant growth and environmental responses, there is no information describing the regulatory complexity of G-protein networks during pathogen response in a polyploid crop. Here, we investigated the role of extra-large G-proteins (XLGs) in the oilseed crop Brassica juncea, which has inherent susceptibility to the necrotrophic fungal pathogen Sclerotinia sclerotiorum. The allotetraploid B. juncea genome contains multiple homologs of three XLG genes (two BjuXLG1, five BjuXLG2, and three BjuXLG3), sharing a high level of sequence identity, gene structure organization, and phylogenetic relationship with the progenitors' orthologs. Quantitative reverse transcription PCR analysis revealed that BjuXLGs have retained distinct expression patterns across plant developmental stages and on S. sclerotiorum infection. To determine the role of BjuXLG genes in the B. juncea defence response against S. sclerotiorum, RNAi-based suppression was performed. Disease progression analysis showed more rapid lesion expansion and fungal accumulation in BjuXLG-RNAi lines compared to the vector control plants, wherein suppression of BjuXLG3 homologs displayed more compromised defence response at the later time point. Knocking down BjuXLGs caused impairment of the host resistance mechanism to S. sclerotiorum, as indicated by reduced expression of defence marker genes PDF1.2 and WRKY33 on pathogen infection. Furthermore, BjuXLG-RNAi lines showed reduced accumulation of leaf glucosinolates on S. sclerotiorum infection, wherein aliphatic glucosinolates were significantly compromised. Overall, our data suggest that B. juncea XLG genes are important signalling nodes modulating the host defence pathways in response to this necrotrophic pathogen.
异三聚体 G 蛋白是跨门进化高度保守的信号转导蛋白之一。尽管 G 蛋白在控制各种植物生长和环境反应方面具有明显的重要性,但在多倍体作物对病原体的反应中,没有描述 G 蛋白网络调节复杂性的信息。在这里,我们研究了特大 G 蛋白(XLGs)在油料作物芸薹属植物中的作用,该作物对坏死真菌病原体核盘菌具有固有易感性。异源四倍体 B. juncea 基因组包含三个 XLG 基因(两个 BjuXLG1、五个 BjuXLG2 和三个 BjuXLG3)的多个同源物,它们具有高度的序列同一性、基因结构组织和与前体同源物的系统发育关系。定量反转录 PCR 分析显示,BjuXLGs 在植物发育阶段和核盘菌感染过程中保留了独特的表达模式。为了确定 BjuXLG 基因在 B. juncea 对核盘菌防御反应中的作用,我们进行了基于 RNAi 的抑制。病程进展分析表明,与载体对照植物相比,BjuXLG-RNAi 系中的病变扩展和真菌积累更快,其中 BjuXLG3 同源物的抑制在稍后时间点表现出更严重的防御反应受损。BjuXLGs 的敲低导致宿主对核盘菌的抗性机制受损,表现在病原体感染时防御标记基因 PDF1.2 和 WRKY33 的表达降低。此外,BjuXLG-RNAi 系在核盘菌感染时叶硫苷的积累减少,其中脂肪硫苷明显减少。总体而言,我们的数据表明,B. juncea XLG 基因是调节宿主防御途径以响应这种坏死病原体的重要信号节点。