Suppr超能文献

基于知识图谱先验知识的多模态框架提高药物再定位的计算能力。

A Multimodal Framework for Improving in Silico Drug Repositioning With the Prior Knowledge From Knowledge Graphs.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Sep-Oct;19(5):2623-2631. doi: 10.1109/TCBB.2021.3103595. Epub 2022 Oct 10.

Abstract

Drug repositioning/repurposing is a very important approach towards identifying novel treatments for diseases in drug discovery. Recently, large-scale biological datasets are increasingly available for pharmaceutical research and promote the development of drug repositioning, but efficiently utilizing these datasets remains challenging. In this paper, we develop a novel multimodal framework, termed GraphPK (Graph-based Prior Knowledge) for improving in silico drug repositioning via using the prior knowledge from a drug knowledge graph. First, we construct a knowledge graph by integrating relevant bio-entities (drugs, diseases, etc.) and associations/interactions among them, and apply the knowledge graph embedding technique to extract prior knowledge of drugs and diseases. Moreover, we make use of the known drug-disease association, and obtain known association-based features from an association bipartite graph through graph embedding, and also take into account biological domain features, i.e., drug chemical structures and disease semantic similarity. Finally, we design a multimodal neural network to combine three types of features from the knowledge graph, the known associations and the biological domain, and build the prediction model for predicting drug-disease associations. Massive experiments show that our method outperforms other state-of-the-art methods in terms of most metrics, and the ablation analysis regarding the three types of features reveals that prior knowledge from knowledge graphs can not only lift the predictive power of in silico drug repositioning, but also enhance the model's robustness to different scenarios. The results of case studies offer support that GraphPK has the potential for actual use.

摘要

药物重定位/再利用是在药物发现中确定治疗疾病的新方法的非常重要的方法。最近,越来越多的大规模生物数据集可用于药物研究,并促进了药物重定位的发展,但有效地利用这些数据集仍然具有挑战性。在本文中,我们开发了一种新颖的多模态框架,称为 GraphPK(基于图的先验知识),通过使用来自药物知识图的先验知识来提高计算机药物重定位。首先,我们通过整合相关的生物实体(药物、疾病等)及其之间的关联/相互作用来构建知识图,并应用知识图嵌入技术提取药物和疾病的先验知识。此外,我们利用已知的药物-疾病关联,通过图嵌入从关联二分图中获得基于关联的特征,并考虑生物学领域特征,即药物化学结构和疾病语义相似性。最后,我们设计了一个多模态神经网络,将来自知识图、已知关联和生物领域的三种类型的特征结合起来,构建用于预测药物-疾病关联的预测模型。大量实验表明,我们的方法在大多数指标上均优于其他最先进的方法,并且针对三种类型的特征的消融分析表明,来自知识图的先验知识不仅可以提高计算机药物重定位的预测能力,而且还可以增强模型对不同场景的鲁棒性。案例研究的结果表明,GraphPK 具有实际应用的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验