IEEE J Biomed Health Inform. 2022 Nov;26(11):5757-5765. doi: 10.1109/JBHI.2022.3194891. Epub 2022 Nov 10.
Drug repositioning identifies novel therapeutic potentials for existing drugs and is considered an attractive approach due to the opportunity for reduced development timelines and overall costs. Prior computational methods usually learned a drug's representation from an entire graph of drug-disease associations. Therefore, the representation of learned drugs representation are static and agnostic to various diseases. However, for different diseases, a drug's mechanism of actions (MoAs) are different. The relevant context information should be differentiated for the same drug to target different diseases. Computational methods are thus required to learn different representations corresponding to different drug-disease associations for the given drug. In view of this, we propose an end-to-end partner-specific drug repositioning approach based on graph convolutional network, named PSGCN. PSGCN firstly extracts specific context information around drug-disease pairs from an entire graph of drug-disease associations. Then, it implements a graph convolutional network on the extracted graph to learn partner-specific graph representation. As the different layers of graph convolutional network contribute differently to the representation of the partner-specific graph, we design a layer self-attention mechanism to capture multi-scale layer information. Finally, PSGCN utilizes sortpool strategy to obtain the partner-specific graph embedding and formulates a drug-disease association prediction as a graph classification task. A fully-connected module is established to classify the partner-specific graph representations. The experiments on three benchmark datasets prove that the representation learning of partner-specific graph can lead to superior performances over state-of-the-art methods. In particular, case studies on small cell lung cancer and breast carcinoma confirmed that PSGCN is able to retrieve more actual drug-disease associations in the top prediction results. Moreover, in comparison with other static approaches, PSGCN can partly distinguish the different disease context information for the given drug.
药物重定位为现有药物确定了新的治疗潜力,由于有机会缩短开发时间线和降低总体成本,因此被认为是一种有吸引力的方法。先前的计算方法通常从药物-疾病关联的整个图中学习药物的表示。因此,所学习的药物表示的表示是静态的,并且与各种疾病无关。但是,对于不同的疾病,药物的作用机制(MoAs)是不同的。对于同一药物,应区分相关的上下文信息以针对不同的疾病。因此,需要计算方法来学习给定药物对应于不同药物-疾病关联的不同表示。有鉴于此,我们提出了一种基于图卷积网络的端到端特定于合作伙伴的药物重定位方法,称为 PSGCN。PSGCN 首先从药物-疾病关联的整个图中提取药物-疾病对周围的特定上下文信息。然后,它在提取的图上实现图卷积网络以学习特定于合作伙伴的图表示。由于图卷积网络的不同层对特定于合作伙伴的图的表示有不同的贡献,因此我们设计了一个层自注意机制来捕获多尺度层信息。最后,PSGCN 使用 sortpool 策略获取特定于合作伙伴的图嵌入,并将药物-疾病关联预测表述为图分类任务。建立一个全连接模块来对特定于合作伙伴的图表示进行分类。在三个基准数据集上的实验证明,特定于合作伙伴的图的表示学习可以带来优于最先进方法的性能。特别是,小细胞肺癌和乳腺癌的案例研究证实,PSGCN 能够在最高预测结果中检索到更多实际的药物-疾病关联。此外,与其他静态方法相比,PSGCN 可以部分区分给定药物的不同疾病上下文信息。