Suppr超能文献

基于超声剪切波绝对振动弹性成像的多模态时序列特征的乳腺癌检测。

Breast Cancer Detection Using Multimodal Time Series Features From Ultrasound Shear Wave Absolute Vibro-Elastography.

出版信息

IEEE J Biomed Health Inform. 2022 Feb;26(2):704-714. doi: 10.1109/JBHI.2021.3103676. Epub 2022 Feb 4.

Abstract

In shear wave absolute vibro-elastography (S-WAVE), a steady-state multi-frequency external mechanical excitation is applied to tissue, while a time-series of ultrasound radio-frequency (RF) data are acquired. Our objective is to determine the potential of S-WAVE to classify breast tissue lesions as malignant or benign. We present a new processing pipeline for feature-based classification of breast cancer using S-WAVE data, and we evaluate it on a new data set collected from 40 patients. Novel bi-spectral and Wigner spectrum features are computed directly from the RF time series and are combined with textural and spectral features from B-mode and elasticity images. The Random Forest permutation importance ranking and the Quadratic Mutual Information methods are used to reduce the number of features from 377 to 20. Support Vector Machines and Random Forest classifiers are used with leave-one-patient-out and Monte Carlo cross-validations. Classification results obtained for different feature sets are presented. Our best results (95% confidence interval, Area Under Curve = 95%±1.45%, sensitivity = 95%, and specificity = 93%) outperform the state-of-the-art reported S-WAVE breast cancer classification performance. The effect of feature selection and the sensitivity of the above classification results to changes in breast lesion contours is also studied. We demonstrate that time-series analysis of externally vibrated tissue as an elastography technique, even if the elasticity is not explicitly computed, has promise and should be pursued with larger patient datasets. Our study proposes novel directions in the field of elasticity imaging for tissue classification.

摘要

在剪切波绝对振动弹性成像(S-WAVE)中,对组织施加稳态多频外部机械激励,同时采集一系列超声射频(RF)数据。我们的目标是确定 S-WAVE 将乳腺组织病变分类为恶性或良性的潜力。我们提出了一种基于 S-WAVE 数据的乳腺癌特征分类的新处理管道,并在从 40 名患者收集的新数据集上对其进行了评估。直接从 RF 时间序列计算新的双谱和维格纳谱特征,并与 B 模式和弹性图像的纹理和光谱特征相结合。随机森林置换重要性排序和二次互信息方法用于将特征数量从 377 个减少到 20 个。使用留一患者外和蒙特卡罗交叉验证支持向量机和随机森林分类器。提出了不同特征集的分类结果。我们的最佳结果(95%置信区间,曲线下面积= 95%±1.45%,灵敏度= 95%,特异性= 93%)优于最新报道的 S-WAVE 乳腺癌分类性能。还研究了特征选择的效果以及上述分类结果对乳腺病变轮廓变化的敏感性。我们证明,作为一种弹性成像技术的外部振动组织的时间序列分析具有潜力,即使不明确计算弹性,也应该使用更大的患者数据集进行研究。我们的研究为组织分类的弹性成像领域提出了新的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验