Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA.
Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA.
Mol Cell. 2021 Aug 19;81(16):3368-3385.e9. doi: 10.1016/j.molcel.2021.07.024. Epub 2021 Aug 9.
The mechanistic understanding of nascent RNAs in transcriptional control remains limited. Here, by a high sensitivity method methylation-inscribed nascent transcripts sequencing (MINT-seq), we characterized the landscapes of N6-methyladenosine (m6A) on nascent RNAs. We uncover heavy but selective m6A deposition on nascent RNAs produced by transcription regulatory elements, including promoter upstream antisense RNAs and enhancer RNAs (eRNAs), which positively correlates with their length, inclusion of m6A motif, and RNA abundances. m6A-eRNAs mark highly active enhancers, where they recruit nuclear m6A reader YTHDC1 to phase separate into liquid-like condensates, in a manner dependent on its C terminus intrinsically disordered region and arginine residues. The m6A-eRNA/YTHDC1 condensate co-mixes with and facilitates the formation of BRD4 coactivator condensate. Consequently, YTHDC1 depletion diminished BRD4 condensate and its recruitment to enhancers, resulting in inhibited enhancer and gene activation. We propose that chemical modifications of eRNAs together with reader proteins play broad roles in enhancer activation and gene transcriptional control.
新生 RNA 在转录调控中的机制理解仍然有限。在这里,通过一种高灵敏度的方法——甲基化记录新生转录本测序(MINT-seq),我们描绘了新生 RNA 上 N6-甲基腺苷(m6A)的图谱。我们发现,转录调控元件(包括启动子上游反义 RNA 和增强子 RNA(eRNA))产生的新生 RNA 上存在大量但具有选择性的 m6A 沉积,这与它们的长度、m6A 基序的包含以及 RNA 的丰度呈正相关。m6A-eRNA 标记高度活跃的增强子,在这些增强子中,它们招募核 m6A 读蛋白 YTHDC1 形成液-液相分离的液滴,这种方式依赖于其 C 端固有无序区和精氨酸残基。m6A-eRNA/YTHDC1 液滴与 BRD4 共激活子液滴混合,并促进其形成。因此,YTHDC1 的耗竭减少了 BRD4 液滴及其对增强子的募集,从而抑制了增强子和基因的激活。我们提出,eRNA 的化学修饰与读蛋白一起,在增强子激活和基因转录调控中发挥广泛作用。