Edmonds Emily C, Smirnov Denis S, Thomas Kelsey R, Graves Lisa V, Bangen Katherine J, Delano-Wood Lisa, Galasko Douglas R, Salmon David P, Bondi Mark W
From the Veterans Affairs San Diego Healthcare System (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., D.R.G., M.W.B.); and Departments of Psychiatry (E.C.E., K.R.T., L.V.G., K.J.B., L.D.-W., M.W.B.) and Neurosciences (D.S.S., D.R.G., D.P.S.), University of California San Diego, La Jolla.
Neurology. 2021 Sep 28;97(13):e1288-e1299. doi: 10.1212/WNL.0000000000012600. Epub 2021 Aug 10.
Given prior work demonstrating that mild cognitive impairment (MCI) can be empirically differentiated into meaningful cognitive subtypes, we applied actuarial methods to comprehensive neuropsychological data from the University of California San Diego Alzheimer's Disease Research Center (ADRC) in order to identify cognitive subgroups within ADRC participants without dementia and to examine cognitive, biomarker, and neuropathologic trajectories.
Cluster analysis was performed on baseline neuropsychological data (n = 738; mean age 71.8). Survival analysis examined progression to dementia (mean follow-up 5.9 years). CSF Alzheimer disease (AD) biomarker status and neuropathologic findings at follow-up were examined in a subset with available data.
Five clusters were identified: optimal cognitively normal (CN; n = 130) with above-average cognition, typical CN (n = 204) with average cognition, nonamnestic MCI (naMCI; n = 104), amnestic MCI (aMCI; n = 216), and mixed MCI (mMCI; n = 84). Progression to dementia differed across MCI subtypes (mMCI > aMCI > naMCI), with the mMCI group demonstrating the highest rate of CSF biomarker positivity and AD pathology at autopsy. Actuarial methods classified 29.5% more of the sample with MCI and outperformed consensus diagnoses in capturing those who had abnormal biomarkers, progressed to dementia, or had AD pathology at autopsy.
We identified subtypes of MCI and CN with differing cognitive profiles, clinical outcomes, CSF AD biomarkers, and neuropathologic findings over more than 10 years of follow-up. Results demonstrate that actuarial methods produce reliable cognitive phenotypes, with data from a subset suggesting unique biological and neuropathologic signatures. Findings indicate that data-driven algorithms enhance diagnostic sensitivity relative to consensus diagnosis for identifying older adults at risk for cognitive decline.
鉴于先前的研究表明轻度认知障碍(MCI)可通过实证方法分为有意义的认知亚型,我们运用精算方法对来自加利福尼亚大学圣地亚哥分校阿尔茨海默病研究中心(ADRC)的综合神经心理学数据进行分析,以识别无痴呆的ADRC参与者中的认知亚组,并研究认知、生物标志物和神经病理学轨迹。
对基线神经心理学数据(n = 738;平均年龄71.8岁)进行聚类分析。生存分析考察进展为痴呆的情况(平均随访5.9年)。在有可用数据的子集中检查随访时脑脊液阿尔茨海默病(AD)生物标志物状态和神经病理学发现。
识别出五个聚类:认知功能最佳正常(CN;n = 130),认知高于平均水平;典型CN(n = 204),认知平均;非遗忘型MCI(naMCI;n = 104);遗忘型MCI(aMCI;n = 216);以及混合型MCI(mMCI;n = 84)。MCI各亚型进展为痴呆的情况有所不同(mMCI > aMCI > naMCI),mMCI组在尸检时脑脊液生物标志物阳性率和AD病理学发生率最高。精算方法对MCI样本的分类比共识诊断多29.5%,在捕捉那些生物标志物异常、进展为痴呆或尸检时有AD病理学表现的个体方面表现优于共识诊断。
我们在超过10年的随访中识别出具有不同认知特征、临床结局、脑脊液AD生物标志物和神经病理学发现的MCI和CN亚型。结果表明精算方法产生可靠的认知表型,来自一个子集的数据提示独特的生物学和神经病理学特征。研究结果表明,相对于共识诊断,数据驱动算法在识别有认知衰退风险的老年人方面提高了诊断敏感性。