Suppr超能文献

从人类微生物组中同时对数百种微生物进行核糖体分析。

Simultaneous ribosome profiling of hundreds of microbes from the human microbiome.

机构信息

Department of Genetics, Stanford University, Stanford, CA, USA.

Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA.

出版信息

Nat Protoc. 2021 Oct;16(10):4676-4691. doi: 10.1038/s41596-021-00592-4. Epub 2021 Aug 11.

Abstract

Ribosome profiling enables sequencing of ribosome-bound fragments of RNA, revealing which transcripts are being translated as well as the position of ribosomes along mRNAs. Although ribosome profiling has been applied to cultured bacterial isolates, its application to uncultured, mixed communities has been challenging. We present MetaRibo-Seq, a protocol that enables the application of ribosome profiling directly to the human fecal microbiome. MetaRibo-Seq is a benchmarked method that includes several modifications to existing ribosome profiling protocols, specifically addressing challenges involving fecal sample storage, purity and input requirements. We also provide a computational workflow to quality control and trim reads, de novo assemble a reference metagenome with metagenomic reads, align MetaRibo-Seq reads to the reference, and assess MetaRibo-Seq library quality ( https://github.com/bhattlab/bhattlab_workflows/tree/master/metariboseq ). This MetaRibo-Seq protocol enables researchers in standard molecular biology laboratories to study translation in the fecal microbiome in ~5 d.

摘要

核糖体图谱分析可对与核糖体结合的 RNA 片段进行测序,从而揭示哪些转录本正在被翻译,以及核糖体在 mRNA 上的位置。尽管核糖体图谱分析已被应用于培养的细菌分离物,但将其应用于未培养的混合群落一直具有挑战性。我们提出了 MetaRibo-Seq,这是一种可以直接将核糖体图谱分析应用于人类粪便微生物组的方案。MetaRibo-Seq 是一种经过基准测试的方法,它对现有的核糖体图谱分析方案进行了多项修改,特别是针对涉及粪便样本储存、纯度和输入要求的挑战。我们还提供了一个计算工作流程,用于质量控制和修剪读取、使用宏基因组读取从头组装参考宏基因组、将 MetaRibo-Seq 读取与参考序列对齐,并评估 MetaRibo-Seq 文库质量(https://github.com/bhattlab/bhattlab_workflows/tree/master/metariboseq)。该 MetaRibo-Seq 方案使标准分子生物学实验室的研究人员能够在大约 5 天内研究粪便微生物组中的翻译过程。

相似文献

1
Simultaneous ribosome profiling of hundreds of microbes from the human microbiome.
Nat Protoc. 2021 Oct;16(10):4676-4691. doi: 10.1038/s41596-021-00592-4. Epub 2021 Aug 11.
2
MetaRibo-Seq measures translation in microbiomes.
Nat Commun. 2020 Jun 29;11(1):3268. doi: 10.1038/s41467-020-17081-z.
4
A rapid protocol for ribosome profiling of low input samples.
Nucleic Acids Res. 2023 Jul 21;51(13):e68. doi: 10.1093/nar/gkad459.
5
Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.
Methods Mol Biol. 2016;1358:71-97. doi: 10.1007/978-1-4939-3067-8_5.
6
Improved high-molecular-weight DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome.
Nat Protoc. 2021 Jan;16(1):458-471. doi: 10.1038/s41596-020-00424-x. Epub 2020 Dec 4.
7
Recommendations for bacterial ribosome profiling experiments based on bioinformatic evaluation of published data.
J Biol Chem. 2020 Jul 3;295(27):8999-9011. doi: 10.1074/jbc.RA119.012161. Epub 2020 May 8.
9
10
Processing a 16S rRNA Sequencing Dataset with the Microbiome Helper Workflow.
Methods Mol Biol. 2018;1849:131-141. doi: 10.1007/978-1-4939-8728-3_9.

引用本文的文献

1
Protein translation: biological processes and therapeutic strategies for human diseases.
Signal Transduct Target Ther. 2024 Feb 23;9(1):44. doi: 10.1038/s41392-024-01749-9.
2
Small proteins in Gram-positive bacteria.
FEMS Microbiol Rev. 2023 Nov 1;47(6). doi: 10.1093/femsre/fuad064.
3
Identification of over ten thousand candidate structured RNAs in viruses and phages.
Comput Struct Biotechnol J. 2023 Nov 7;21:5630-5639. doi: 10.1016/j.csbj.2023.11.010. eCollection 2023.
4
Nanopore techniques as a potent tool in the diagnosis and treatment of endophthalmitis: a literature review.
Int J Ophthalmol. 2022 Dec 18;15(12):2009-2016. doi: 10.18240/ijo.2022.12.17. eCollection 2022.
5
Thousands of small, novel genes predicted in global phage genomes.
Cell Rep. 2022 Jun 21;39(12):110984. doi: 10.1016/j.celrep.2022.110984.

本文引用的文献

1
Automated Prediction and Annotation of Small Open Reading Frames in Microbial Genomes.
Cell Host Microbe. 2021 Jan 13;29(1):121-131.e4. doi: 10.1016/j.chom.2020.11.002. Epub 2020 Dec 7.
2
Structured RNA Contaminants in Bacterial Ribo-Seq.
mSphere. 2020 Oct 21;5(5):e00855-20. doi: 10.1128/mSphere.00855-20.
4
MetaRibo-Seq measures translation in microbiomes.
Nat Commun. 2020 Jun 29;11(1):3268. doi: 10.1038/s41467-020-17081-z.
5
Nuclease-mediated depletion biases in ribosome footprint profiling libraries.
RNA. 2020 Oct;26(10):1481-1488. doi: 10.1261/rna.075523.120. Epub 2020 Jun 5.
7
Protocol for Ribosome Profiling in Bacteria.
Bio Protoc. 2019 Dec 20;9(24). doi: 10.21769/BioProtoc.3468.
8
Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes.
Cell. 2019 Aug 22;178(5):1245-1259.e14. doi: 10.1016/j.cell.2019.07.016. Epub 2019 Aug 8.
9
Retapamulin-Assisted Ribosome Profiling Reveals the Alternative Bacterial Proteome.
Mol Cell. 2019 May 2;74(3):481-493.e6. doi: 10.1016/j.molcel.2019.02.017. Epub 2019 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验