Suppr超能文献

基于深度卷积神经网络的铁轨表面及扣件缺陷检测方法。

A Defect Detection Method for Rail Surface and Fasteners Based on Deep Convolutional Neural Network.

机构信息

School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China.

School of Information Science and Technology, Donghua University, Shanghai 201620, China.

出版信息

Comput Intell Neurosci. 2021 Jul 29;2021:2565500. doi: 10.1155/2021/2565500. eCollection 2021.

Abstract

As a result of long-term pressure from train operations and direct exposure to the natural environment, rails, fasteners, and other components of railway track lines inevitably produce defects, which have a direct impact on the safety of train operations. In this study, a multiobject detection method based on deep convolutional neural network that can achieve nondestructive detection of rail surface and fastener defects is proposed. First, rails and fasteners on the railway track image are localized by the improved YOLOv5 framework. Then, the defect detection model based on Mask R-CNN is utilized to detect the surface defects of the rail and segment the defect area. Finally, the model based on ResNet framework is used to classify the state of the fasteners. To verify the robustness and effectiveness of our proposed method, we conduct experimental tests using the ballast and ballastless railway track images collected from Shijiazhuang-Taiyuan high-speed railway line. Through a variety of evaluation indexes to compare with other methods using deep learning algorithms, experimental results show that our method outperforms others in all stages and enables effective detection of rail surface and fasteners.

摘要

由于列车运行的长期压力和直接暴露在自然环境中,轨道、扣件和其他铁路线路部件不可避免地会产生缺陷,这直接影响到列车运行的安全。在这项研究中,提出了一种基于深度卷积神经网络的多目标检测方法,可以实现对轨道表面和扣件缺陷的无损检测。首先,通过改进的 YOLOv5 框架定位铁路轨道图像上的钢轨和扣件。然后,利用基于 Mask R-CNN 的缺陷检测模型检测钢轨表面缺陷并对缺陷区域进行分割。最后,使用基于 ResNet 框架的模型对扣件的状态进行分类。为了验证我们提出的方法的鲁棒性和有效性,我们使用从石家庄-太原高速铁路采集的道床和无砟轨道图像进行了实验测试。通过与其他使用深度学习算法的方法进行各种评估指标的比较,实验结果表明,我们的方法在各个阶段都优于其他方法,可以有效地检测轨道表面和扣件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f54/8352690/85be96015f9b/CIN2021-2565500.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验